
Lenora Knox 
The George Washington University  
Systems Engineering Ph.D. Candidate 
 
Co-Authors: 
Dr. Bereket Tanju, Dr. Steven Stuban, and Dr. Jason Dever 

Department of Engineering Management and Systems 
Engineering  

School of Engineering and Applied Science  

 



Over the last decade, the need for more complex military defense systems has 
become increasingly apparent.  As new threats continue to evolve and advance 
quickly, so does the need for on demand capability to defend against them.  Self-
adaptive systems allow the military to quickly react and adapt to changing threat 
environments intelligently with minimal human interaction and degradation of 
mission performance.  This growing area has experts concerned about maintaining 
a high level of system reliability.  It’s become increasingly difficult to apply traditional 
methods of reliability analysis to design proposed future defense systems.  Although 
designing for reliability is a proven challenge, with the proper design framework in 
place, one can enhance the reliability of self-adaptive systems through use of 
model-based design methods.  In this briefing, a preliminary model-based design 
approach is proposed that allows for an integrated qualitative and quantitative 
analysis for enhancing the overall reliability of systems with self-adaptive capability.  
A case study with applicability to military defense will be used to prove out initial 
model-based concept.  

Abstract 



According to the Department of 
Defense (DoD) Systems 2020 
report, future systems will become 
increasingly complex.   
 
Self-adaptive capability on 
demand (COD) allows systems in 
the field “to rapidly respond to a 
changing environment as the 
mission evolves in unplanned, 
unforeseen ways” (Boehm).1  

 
This growing area has experts 
concerned about the reliability of 
these evolving systems. 
 

 

Systems 2020 

It’s become increasingly hard to apply traditional methods of 
reliability analysis to design proposed future systems.1 

There will be a need for faster, more 
flexible, and more adaptable systems.1 
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In Self-Adaptive COD Systems, there is 
great opportunity to enhance reliability in 

the area of composable DoD 
components. 1  

Enhancing Reliability of Self-
Adaptive COD Systems 

With the proper design framework in place one can enhance the 
reliability of self-adaptive systems through use of model-based 
design methods.  

For example, embedded sensors and computing components can be 
composed to generate, filter, and analyze data.1   
 
Model-Based Prognostic Health Management can be applied though use of 
algorithms to measure, monitor, and predict system performance. 3 

Major components of prognostics implementation3 



Benefits of PHM 3 

 
 Allows for quantitative analysis  

 
Permits the reliability of a 

system to be evaluated in its 
actual life cycle conditions. 

 
Improves system safety 

 
Increases system operations, 

reliability, and mission 
availability 

 
Decreased unnecessary 

maintenance actions 
 

Reduced system life-cycle costs 
(LCC) 

 
 

 
 

Model-Based Prognostics 

Potential benefits of prognostics in system life cycle process 3 

Advance failure warning capability of prognostics 3 Schematic illustration of prognostic accuracy concept 3 

For military applications, the U.S. Army includes prognostics 
technology in their weapons platforms and support vehicles. PHM 
implementation is explicitly stated in the DoD 5000.02 defense 
acquisition policy document .3 



Case Study: Self-Adaptive 
Battery Management System 
(BMS) 

Generalized Process Flow for Battery State Estimation4 

This Self-Adaptive BMS uses SOH predictions to update the SOC 
estimator in order to minimize drift due to capacity loss and cell 
degradation.4 

This self-adaptive prognostics method 
integrates State of Charge (SOC) and 
State of Heath (SOH) into one model. 4  



CS2 Lithium-ion Battery4,5 

•Commercial single cell battery 
•Rated Capacity: 1.1Ah 
•Weight: 21.1g 
•Dimensions: 5.4 X 33.6 X 50.6 mm 
•Composed of standard materials typical 
of batteries for in portable devices  

•Cathode with LiCoO2 particles 
adhered to an aluminum current 
collector with a polymer binder 
•Anode with graphite particles 
deposited on a copper current 
collector. 
•Electrodes separated by a polymer 
matrix and cell doused in LiPF6 
solution and organic solvents to 
provide electrolyte. 

 

Data 

Using the Arbin BT2000 Battery Test System a single cell  
Lithium-ion battery was tested using a constant current/constant 
voltage protocol.4 

Test Conditions4 

•Equipment  
•Arbin BT2000 Battery Test System 

•Performed life cycle testing 
•Constant current/constant voltage protocol used. 

•Applied constant current of 0.55A to 
charge until terminal voltage reached 4.2V. 
•Applied constant current of 0.55A to 
discharge until cut-off voltage threshold of  
2.7V was reached. 

•Time data was sampled every 30 secs. 
•Sampled data at room temperature. 

Generalized Process Flow for Battery State Estimation5 

Arbin  BT2000 Battery Test System5  



• The equivalent circuit model (ECM) was derived to 
model the voltage of battery. It’s parameters were 
pulled from the battery’s impedance spectroscopy 
Nyquist plot data. 4 

• From the model, a time and current dependent 
equation for the terminal voltage under constant 
discharge was developed. 4 
 
 

 where, R1 and R2 are restrictive components and C are 
capacitive components extracted from the plot, Q(0) is 
initial capacity (below), I is current, t is time, V0 is the 
open circuit voltage (OCV). V0 is saved in a look up 
table. 

                         
  
 where, t1 is fully charged time and t2 fully discharge 

time.  
 

Approach 
Schematic of Equivalent Circuit 4 

Nyquist Plot 4 

Extracted ECM values 4 

To find initial Q(0) and V0 a preliminary 
charge/discharge cycle is conducted at  0.55A. 4 

The Voltage Model shows the relationship between SOC and the 
terminal voltage of the battery under constant discharge.4 



• OCV is calculated by averaging the terminal 
voltages of the first charge with the voltages of 
the first discharge cycle. 4 

• The values of R1, Q(0), and V0 are continuously 
updated in the voltage model using n+1th cycle 
capacity predictions. 4   

• The capacity predictions are calculated with a 
capacity fade model 4 
 
 
 
 

 where Q is the capacity, n is the cycle number, 
and a through d are the model parameters 
updated at the end of each discharge.  

 These updates allow the model to best reflect the 
measured capacity. 
 

Approach cont. Calculation of OCV 4 

Initial  Equivalent 
Circuit Model vs. 
Measured  Discharge 
Voltage at Cycle 1 
and 700 4 

Results of UKF on Capacity Fade Data 4 

Unscented Kalman Filter technique is applied at the end 
of each discharge cycle to predict the n+1 capacity. 4 

The Capacity Fade Model can determine the SOH through 
evaluation of the amount of capacity degradation that has 
occurred in the battery.4 



• The time in the OCV look up table is 
calculated by dividing the capacity by the 
discharge current for k number of cycles. 4  

 
 

  
 where, Q/i is the time to the end of 

discharge. 
 
• Non-linear least squares regression was 

used to find the updated value of R1 at the 
end of each discharge. 4 
 
 

 This  minimizes residuals between the 
voltage equation and measured voltage 
values 
 
 
 
 
 

Approach cont.
 

Measured Voltage Curve  vs. Model at Cycles 1, 400, and 700 4 

SOH degradation can be projected into the future to estimate the 
battery’s remaining useful performance (RUP). RUP predictions 
are useful to create a reliable condition based maintenance 
strategy for battery replacements.4 



•Although the Self-Adaptive BMS over 
predicts the voltage in first cycle, it is able to 
adapt as the battery ages. 4 

 
•With this model you can estimate the SOC 
and SOH in the same model to produce a 
self-adaptive capability. 4 

 
•The model is a generalized framework that 
allows for different combinations of voltage 
and capacity fade models to work together. 4 

 
•Results of SOC and SOH can be displayed 
on a fuel gauge that is easily interpreted by 
users of fielded systems. 4 

 

Results 

A model-based design method successfully modeled a self-adaptive 
BMS at constant current/constant voltage. Can we achieve similar 
level of reliability of prediction using data with dynamic 
characteristics? 

Discharge Voltage (red) and the Corresponding SOC 
Gauge Mapping (black) 4 

Reduction of Available Charge as Capacity Decreases  
Over Each Cycle Use 4 



•Battery degradation can vary 
based on 

•relationships between the usage 
load profile of the application and 
environmental conditions.4 

•variations in materials and 
particle contaminates in the 
battery used.4 

 
•Multi-cell battery pack can be 
subject to overcharging, 
overheating, and/or short circuit 
issues 4 

 

Considerations under Dynamic 
Conditions  6 

For example, a UAV should consider the following 
conditions:6 

•Mission travel distances 
•Ambient storage temperatures 

•Increased temperature increases discharge 
rate/causes drop in voltage. 

•Takeoff/landing and cruise power requirements 
  

Battery degradation under dynamic conditions are highly dependent 
on parameters such as temperature and power requirements. 5 



Autoregressive Integrated Moving Average 
(ARIMA) 6 

•data-driven approach 
•linear model 
•used for baseline comparison with other 
approaches 
 

Extended Kalman Filter (EKF) 6 

•classical approach to non-linear state 
estimation 
•use of model 
•relatively fast execution time (although 
slower than data-driven techniques) 

 

 

Self-Adaptive BMS Algorithms 
Under Consideration 

Relevance Vector Machine (RVM) 6 

•state of the art in nonlinear 
probabilistic regression 
•very fast 
 

Particle Filter (PF) 6 

•state of the art for nonlinear non-
Gaussian state estimation 
•slower than Kalman Filter  
•uses model 

 

According to NASA, the following battery prognostic algorithms are under consideration in 
the industry:   

NASA is currently considering a combination of prognostic 
algorithms to best estimate SOC, SOH, and RUP of Lithium-ion 
batteries. 6 



• Test and verify the Capacity Fade Model in a 
dynamic environment using a supervised 
machine learning technique. (e.g., Artificial 
Neural Networks) 
 

• Using collected data, the machine learning 
algorithm utilizes pattern recognition and 
regression to find a function that better maps a 
set of inputs to it’s known correct output.7 

 
• Parameters inputs can include parameters such 

as current, voltage, temperature, internal 
resistance, and number of cycles.  

 

Proposed Approach to 
Dynamic Self-Adaptive BMS  

Artificial neural network nodes 7 

The use of machine learning neural networks can enhance 
reliability of battery degradation predictions in self-adaptive BMS.7 

http://en.wikipedia.org/wiki/File:Colored_neural_network.svg


• A Self-Adaptive BMS uses the concepts of Model-Based PHM to 
accurately predict remaining useful performance of a Lithium-ion battery.   
• A generalized model has been verified using a constant 

current/constant voltage  protocol. 
 

• In order to enhance the reliability of this self-adaptive system under 
dynamic conditions, a supervised machine learning technique approach 
was proposed. 
 

• Future work will include testing data with dynamic characteristics under 
this new proposed approach. 

 

Summary 

For more information, please contact Lenora Knox at 
lenora.a.knox@gmail.com 
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