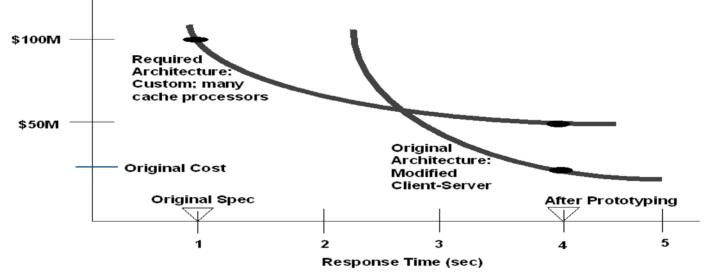


Analysis of System "ility" Synergies and Conflicts

Barry Boehm, USC

NDIA SE Conference October 30, 2014

Ilities Tradespace and Affordability Analysis


- Critical nature of the ilities
 - Or non-functional requirements; quality attributes
 - Major source of project overruns, failures
 - Significant source of stakeholder value conflicts
 - Poorly defined, understood
 - Underemphasized in project management
 - Need for ilities ontology
 - Ility synergies and conflicts analysis
 - Stakeholder value-based, means-ends hierarchy
 - Synergies and Conflicts matrix and expansions
 - Affordability means-ends hierarchy

Importance of ility Tradeoffs

Major source of DoD system overruns

- System ilities have systemwide impact
 - System elements generally just have local impact
- ilities often exhibit asymptotic behavior
 - Watch out for the knee of the curve
- Best architecture is a discontinuous function of ility level
 - "Build it quickly, tune or fix it later" highly risky
 - Large system example below

- Single-agent key distribution; single data copy
 - Reliability: single points of failure
- Elaborate multilayer defense
 - Performance: 50% overhead; real-time deadline problems
- Elaborate authentication
 - Usability: delays, delegation problems; GUI complexity
- Everything at highest level
 - Modifiability: overly complex changes, recertification

Proliferation of Definitions: Resilience

- Wikipedia Resilience variants: Climate, Ecology, Energy Development, Engineering and Construction, Network, Organizational, Psychological, Soil
- Ecology and Society Organization Resilience variants: Original-ecological, Extended-ecological, Walker et al. list, Folke et al. list; Systemic-heuristic, Operational, Sociological, Ecological-economic, Social-ecological system, Metaphoric, Sustainabilty-related
- Variants in resilience outcomes
 - Returning to original state; Restoring or improving original state;
 Maintaining same relationships among state variables; Maintaining desired services; Maintaining an acceptable level of service; Retaining essentially the same function, structure, and feedbacks; Absorbing disturbances; Coping with disturbances; Self-organizing; Learning and adaptation; Creating lasting value

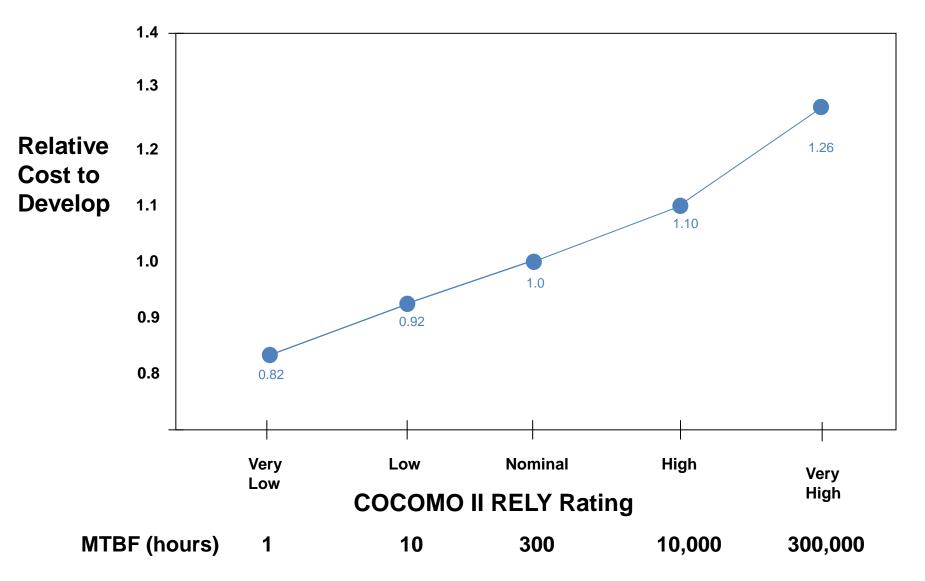
- "The system shall have a Mean Time Between Failures of 10,000 hours"
- What is a "failure?"
 - 10,000 hours on liveness
 - But several dropped or garbled messages per hour?
- What is the operational context?
 - Base operations? Field operations? Conflict operations?
- Most management practices focused on functions
 - Requirements, design reviews; traceability matrices; work breakdown structures; data item descriptions; earned value management
- What are the effects on other –ilities?
 - Cost, schedule, performance, maintainability?

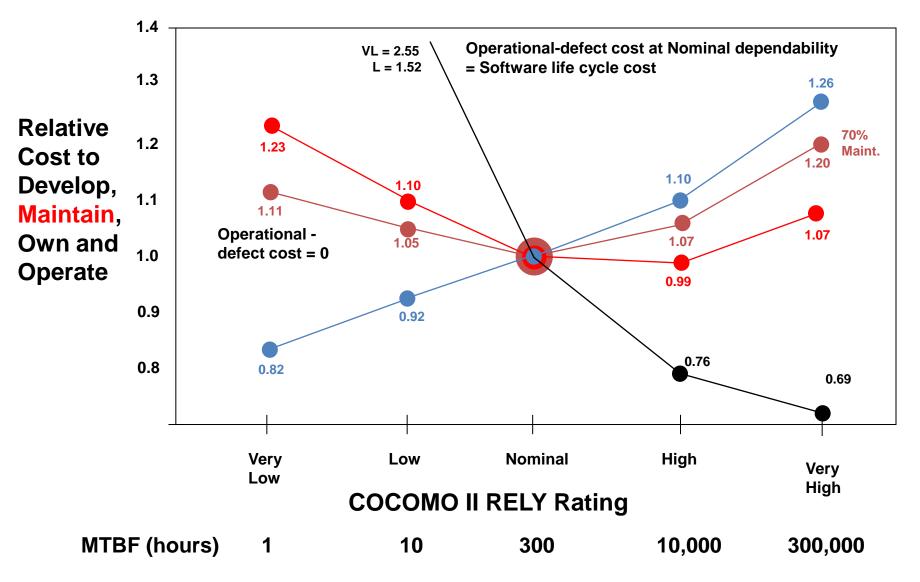
- Oversimplified one-size-fits all definitions
 - ISO/IEC 25010, Reliability: the degree to which a system , product, or component performs specified functions under specified conditions for a specified period of time
 - OK if specifications are precise, but increasingly "specified conditions" are informal, sunny-day user stories. Satisfying just these will pass ISO/IEC, but fail on rainy-day use cases
 - Need to reflect that different stakeholders rely on different capabilities (functions, performance, flexibility, etc.) at different times and in different environments
- Proliferation of definitions, as with Resilience
- Weak understanding of inter-ility relationships
 - Synergies and Conflicts

- Modified version of IDEF5 ontology framework
 - Classes, Subclasses, and Individuals
 - States, Processes, and Relations
- Top classes cover stakeholder value propositions
 - Mission Effectiveness, Resource Utilization, Dependability, Flexibility
- Subclasses identify means for achieving higher-class ends
 - Means-ends one-to-many for top classes
 - Ideally mutually exclusive and exhaustive, but some exceptions
 - Many-to-many for lower-level subclasses
- States, Processes, and Relations cover sources of ility variation
 - States: Internal (beta-test); External (rural, temperate, sunny)
 - Processes: Operational scenarios (normal vs. crisis; experts vs. novices)
 - Relations: Impact of other ilities (security as above, synergies & conflicts)

Ilities Tradespace and Affordability Analysis

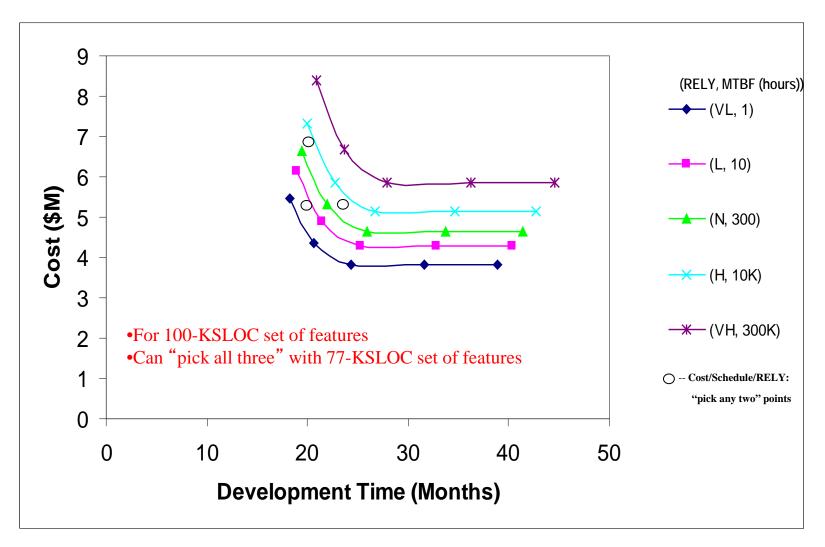
- Critical nature of the ilities
 - Or non-functional requirements; quality attributes
 - Major source of project overruns, failures
 - Significant source of stakeholder value conflicts
 - Poorly defined, understood
 - Underemphasized in project management
 - Need for ilities ontology
- Ility synergies and conflicts analysis
 - Stakeholder value-based, means-ends hierarchy
 - Synergies and Conflicts matrix and expansions
 - Affordability means-ends hierarchy


- Mission operators and managers want improved Mission Effectiveness
 - Involves Physical Capability, Cyber Capability, Human Usability, Speed, Accuracy,
 Impact, Endurability, Maneuverability, Scalability, Versatility, Interoperability
- Mission investors and system owners want Mission Cost-Effectiveness
 - Involves Cost, Duration, Personnel, Scarce Quantities (capacity, weight, energy, ...);
 Manufacturability, Sustainability
- All want system Dependability: cost-effective defect-freedom, availability, and safety and security for the communities that they serve
 - Involves Reliability, Availablilty, Maintainability, Survivability, Safety, Security
- In an increasingly dynamic world, all want system Flexibility: to be rapidly and cost-effectively changeable
 - Involves Modifiability, Tailorability, Adaptability


- Mission Effectiveness expanded to 4 elements
 - Physical Capability, Cyber Capability, Interoperability, Other
 Mission Effectiveness (including Usability as Human Capability)
- Synergies and Conflicts among the 7 resulting elements identified in 7x7 matrix
 - Synergies above main diagonal, Conflicts below
- Work-in-progress tool will enable clicking on an entry and obtaining details about the synergy or conflict
 - Ideally quantitative; some examples next
- Still need synergies and conflicts within elements
 - Example 3x3 Dependability subset provided

	Flexibility	Dependability	Mission Effectivenss	Resource Utilization	Physical Capability	Cyber Capability	Interoperability
		Domain architecting within domain	Adaptability	Adaptability	Adaptability	Adaptability	Adaptability
		Modularity	Many options	Agile methods	Spare capacity	Spare capacity	Loose coupling
		Self Adaptive	Service oriented	Automated I/O validation			Modularity
Flexibility		Smart monitoring	Spare capacity	Loose coupling for sustainability			Product line architectures
		Spare Capacity	User programmability	Product line architectures			Service-oriented connectors
		Use software vs. hardware	Versatility	Staffing, Empowering			Use software vs. Hardware
	to an altertary		A constituent of	Automated at the	To Ub a she	To Ub a sha	User programmability
	Accreditation		Accreditation	Automated aids	Fallbacks	Fallbacks	Assertion Checking
	Agile methods assurance		FMEA	Automated I/O validation	Lightweight agility	Redundancy	Domain architecting within domain
	Encryption		Multi-level security	Domain architecting within domain	Redundancy	Value prioritizing	Service oriented
Dependability	Many options		Survivability	Product line architectures	Spare capacity		
	Multi-domain modifiability		Spare capacity	Staffing, Empowering	Value prioritizing		
	Multi-level security Self Adaptive defects			Total Ownership Cost			
	User programmability			Value prioritizing			
	over programmaounty						
	Autonomy vs. Usability	Anti-tamper		Automated aids	Automated aids	Automated aids	Automated aids
	Modularity slowdowns	Armor vs. Weight		Domain architecting within domain	Domain architecting within domain	Domain architecting within domain	Domain architecting within domain
Malasian Official	Multi-domain architecture	England floot downloader in		Staffing, Empowering	Staffing, Empowering	Staffing, Empowering	Staffing, Empowering
Mission Effectivenss	interoperability conflicts Versatility vs. Usability	Easiest-first development Redundancy		Value prioritizing			
	versatinty vs. Usability	Redundancy Scalability		Value prioritizing	Value prioritizing	Value prioritizing	
		Spare Capacity					
		Usability vs. Security					
	Agile Methods scalability	Accreditation	Agile methods scalability		Automated aids	Automated aids	Automated aids
	Assertion checking overhead	Acquisition Cost	Cost of automated aids		Domain architecting within domain	Domain architecting within domain	Domain architecting within domain
	Fixed cost contracts	Certification	Many options		Staffing, Empowering	Staffing, Empowering	Rework cost savings
	Modularity	Easiest-first development	Multi-domain architecture interoperability conflicts		Value prioritizing	Value prioritizing	Staffing, Empowering
Resource Utilization	Multi-domain architecture interoperability conflicts	Fallbacks	Spare capacity				
	Spare capacity	Multi-domain architecture interoperability conflicts	Usability vs. Cost savings				
	Tight coupling	Redundancy	Versatility				
	Use software vs. hardware	Spare Capacity, tools costs					
	Multi domaio ambitantera	Usability vs. Cost savings	Multi domaio embitent				
	Multi-domain architecture interoperability conflicts	Lightweight agility	Multi-domain architecture interoperability conflicts	Cost of automated aids		Automated aids	Automated aids
Physical Capability	Over-optimizing	Multi-domain architecture interoperability conflicts	Over-optimizing	Multi-domain architecture interoperability conflicts		Staffing, Empowering	Domain architecting within domain
	Tight coupling	Over-optimizing		Over-optimizing		Value prioritizing	
	Use software vs. hardware						
	Agile Methods scalability	Multi-domain architecture interoperability conflicts	Multi-domain architecture interoperability conflicts	Cost of automated aids	Over-optimizing		Automated aids
	Multi-domain architecture	Over-optimizing	Over-optimizing	Multi-domain architecture	Physical architecture or		Domain architecting within
Cyber Capability	interoperability conflicts			interoperability conflicts	cyber architecture		domain
	Over-optimizing			Over-optimizing			
	Tight coupling Use software vs. hardware						
	Use software vs. hardware Multi-domain architecture		Multi-domain architecture			Reduced speed of Assertion	
	interoperability conflicts	Encryption interoperability	interoperability conflicts	Assertion checking	Over-optimizing	checking	
10.00		Multi deserve data d		Cost desistant of the		Reduced speed of	10
Interopera <u>h</u> i(i)ty3()		Multi-domain architecture		Cost, duration of added	Tight vs. Loose coupling	connectors, standards	12
	interoperability	interoperability conflicts		connectors		compliance	
						Tight vs. Loose coupling	

Software Development Cost vs. Reliability



Software Ownership Cost vs. Reliability

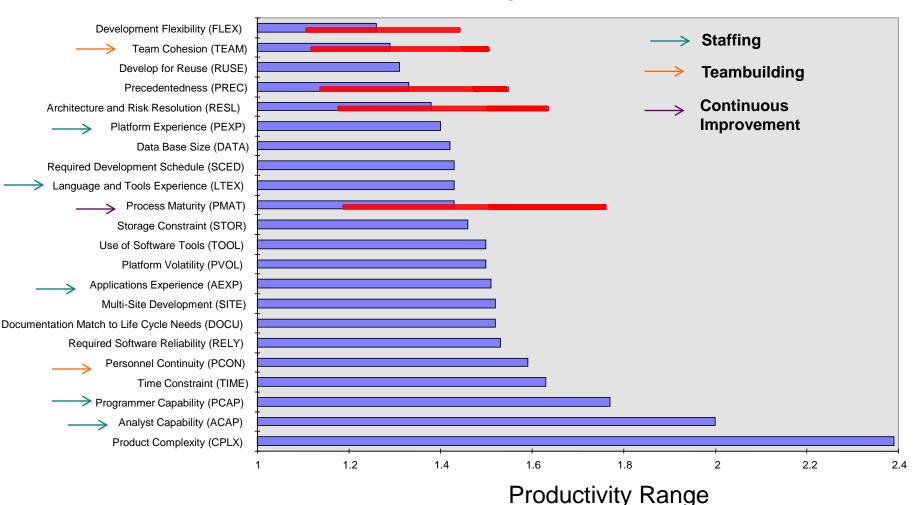
COCOMO II-Based Tradeoff Analysis Better, Cheaper, Faster: Pick Any Two?

	Flexibility	Dependability	Mission Effectivenss	Resource Utilization	Physical Capability	Cyber Capability	Interoperability
		Domain architecting within domain	Adaptability	Adaptability	Adaptability	Adaptability	Adaptability
		Modularity	Many options	Agile methods	Spare capacity	Spare capacity	Loose coupling
		Self Adaptive	Service oriented	Automated I/O validation			Modularity
Flexibility		Smart monitoring	Spare capacity	Loose coupling for sustainability			Product line architectures
		Spare Capacity	User programmability	Product line architectures			Service-oriented connectors
		Use software vs. hardware	Versatility	Staffing, Empowering			Use software vs. Hardware
	to an altertary		A constituent of	Automote distante	To Ub a she	To Ub a sha	User programmability
	Accreditation		Accreditation	Automated aids	Fallbacks	Fallbacks	Assertion Checking
	Agile methods assurance		FMEA	Automated I/O validation	Lightweight agility	Redundancy	Domain architecting within domain
	Encryption		Multi-level security	Domain architecting within domain	Redundancy	Value prioritizing	Service oriented
Dependability	Many options Multi-demain modifiability		Survivability	Product line architectures	Spare capacity		
	Multi-domain modifiability Multi-level security		Spare capacity	Staffing, Empowering	Value prioritizing		
	Multi-level security Self Adaptive defects			Total Ownership Cost Value prioritizing			
	User programmability			value prioritizing			
	erer broßterrungennty						
	Autonomy vs. Usability	Anti-tamper		Automated aids	Automated aids	Automated aids	Automated aids
	Modularity slowdowns	Armor vs. Weight		Domain architecting within domain	Domain architecting within domain	Domain architecting within domain	Domain architecting within domain
Mission Effectivenss	Multi-domain architecture interoperability conflicts	Easiest-first development		Staffing, Empowering	Staffing, Empowering	Staffing, Empowering	Staffing, Empowering
	Versatility vs. Usability	Redundancy		Value prioritizing	Value prioritizing	Value prioritizing	
		Scalability					
		Spare Capacity					
	1 - 11 - 11 - 11 - 1 1 - 1 - 11	Usability vs. Security	telle south a terror terror		to the stand of the	A set of set of set of set	to the second sector
	Agile Methods scalability Assertion checking	Accreditation	Agile methods scalability		Automated aids	Automated aids	Automated aids
	overhead	Acquisition Cost	Cost of automated aids		Domain architecting within domain	Domain architecting within domain	Domain architecting within domain
	Fixed cost contracts	Certification	Many options		Staffing, Empowering	Staffing, Empowering	Rework cost savings
-	Modularity	Easiest-first development	Multi-domain architecture interoperability conflicts		Value prioritizing	Value prioritizing	Staffing, Empowering
Resource Utilization	Multi-domain architecture interoperability conflicts	Fallbacks	Spare capacity				
	Spare capacity	Multi-domain architecture interoperability conflicts	Usability vs. Cost savings				
	Tight coupling	Redundancy	Versatility				
	Use software vs. hardware	Spare Capacity, tools costs					
	Multi-domain architecture	Usability vs. Cost savings	Multi-domain architecture				
	interoperability conflicts	Lightweight agility	interoperability conflicts	Cost of automated aids		Automated aids	Automated aids
Physical Capability	Over-optimizing	Multi-domain architecture interoperability conflicts	Over-optimizing	Multi-domain architecture interoperability conflicts		Staffing, Empowering	Domain architecting within domain
	Tight coupling Use software vs. hardware	Over-optimizing		Over-optimizing		Value prioritizing	
	Agile Methods scalability	Multi-domain architecture	Multi-domain architecture	Cost of automated aids	Over-optimizing		Automated aids
	Multi-domain architecture	interoperability conflicts	interoperability conflicts	Multi-domain architecture	Physical architecture or		Domain architecting within
Cyber Capability	interoperability conflicts	Over-optimizing	Over-optimizing	interoperability conflicts	cyber architecture		domain
ciper capability	Over-optimizing			Over-optimizing	operationecture		
	Tight coupling						
	Use software vs. hardware						
	Multi-domain architecture interoperability conflicts	Encryption interoperability	Multi-domain architecture interoperability conflicts	Assertion checking	Over-optimizing	Reduced speed of Assertion checking	
Internet (IR) 0.0		Multi-domain architecture		Cost duration of adda.d		Reduced speed of	10
Interopera <u>b</u> ility3()	20sedprogrammed interoperability	Multi-domain architecture		Cost, duration of added connectors	Tight vs. Loose coupling	connectors, standards	16
	interoperability	interoperability conflicts		connectors		compliance	
						Tight vs. Loose coupling	

	Security	Reliability	Maintainability
		Confidentiality, Integrity, Avalability	Certification
		Assurance Cases	Diagnosability
		Certification	Integrity, Avalability
Security		Failure Modes and Effects Analysis	Repairability
		Fault Tree Analysis	Smart Monitoring
		Recertification	Spare Capacity
	Non-redundancy (For Security)		Accessibility
	Redundancy (For Reliability)		Certification
			Diagnosability
			Repairability
Reliability			Smart Monitoring
Reliability			Spare Capacity
	Accessibility	Armor	
	Compartmentalization	Recertification	
	Encryption		
Maintainability	Recertification		

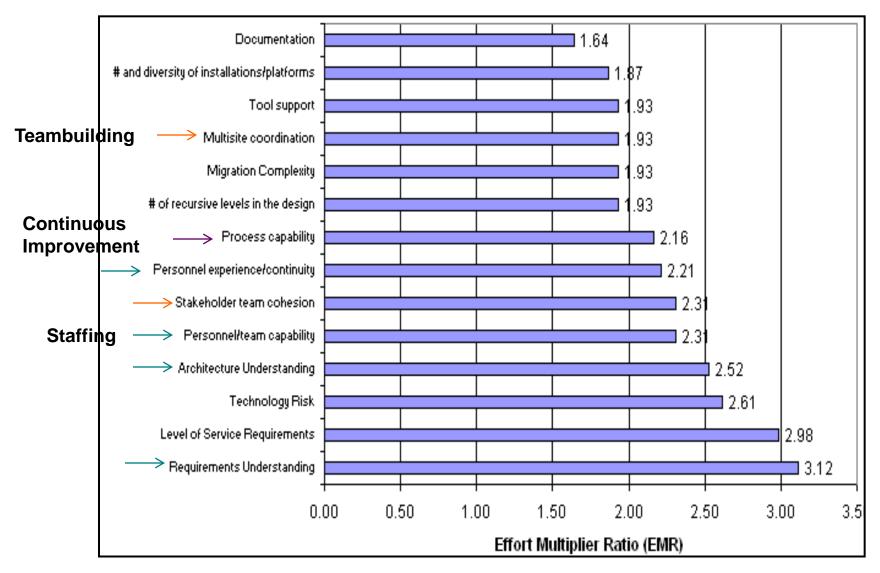
Ilities Tradespace and Affordability Analysis

- Critical nature of the ilities
 - Or non-functional requirements; quality attributes
 - Major source of project overruns, failures
 - Significant source of stakeholder value conflicts
 - Poorly defined, understood
 - Underemphasized in project management
 - Need for ilities ontology
- Ility synergies and conflicts analysis
 - Stakeholder value-based, means-ends hierarchy
 - Synergies and Conflicts matrix and expansions


Affordability means-ends hierarchy

Affordability and Tradespace Framework

	Get the Best from People	Staffing, Incentivizing, Teambuilding Facilities, Support Services Kaizen (continuous improvement)
	Make Tasks More Efficient	 Tools and Automation Work and Oversight Streamlining Collaboration Technology
Affordability Improvements	Eliminate Tasks	 Lean and Agile Methods Task Automation Model-Based Product Generation
 and Tradeoffs	Eliminate Scrap, Rework	Early Risk and Defect Elimination Evidence-Based Decision Gates Modularity Around Sources of Change
		Incremental, Evolutionary Development Value-Based, Agile Process Maturity
	Simplify Products (KISS)	Risk-Based Prototyping Value-Based Capability Prioritization Satisficing vs. Optimizing Performance
	Reuse Components	Domain Engineering and Architecture Composable Components,Services, COTS Legacy System Repurposing
	Reduce Operations, Support Costs	Automate Operations Elements Design for Maintainability, Evolvability
	Value- and Architecture-Based Tradeoffs and Balancing	

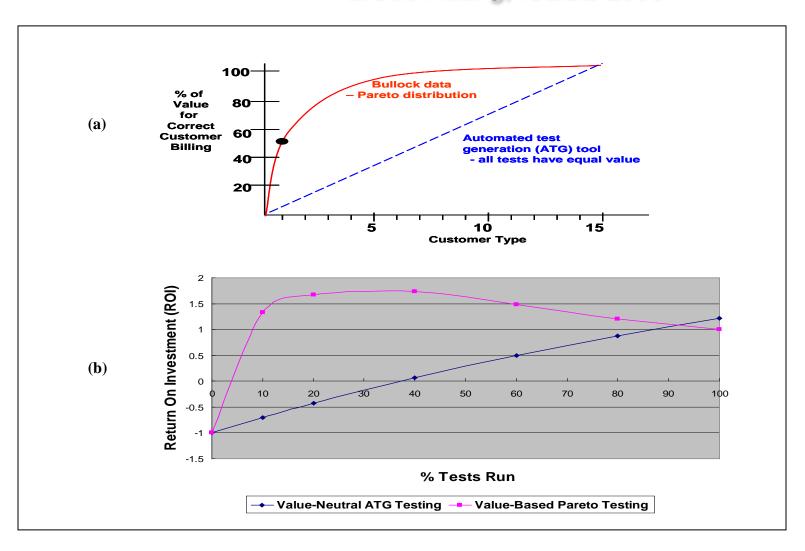

Costing Insights: COCOMO II Productivity Ranges

Scale Factor Ranges: 10, 100, 1000 KSLOC

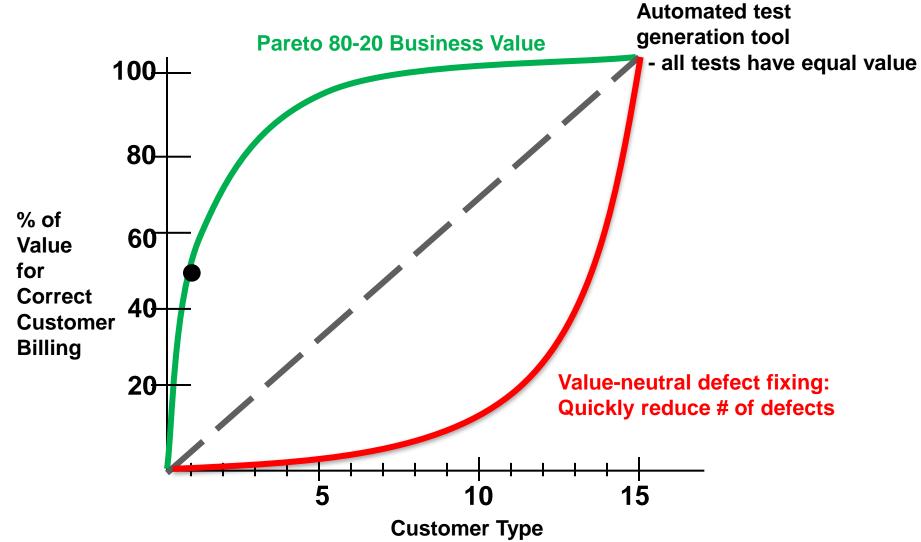
COSYSMO Sys Engr Cost Drivers

- Ilities or non-functional requirements are success-critical
 - Major source of project overruns, failures
 - Significant source of stakeholder value conflicts
 - Poorly defined, understood
 - Underemphasized in project management
- Ilities ontology clarifies nature of ilities
 - Using value-based, means-ends hierarchy
 - Identifies sources of variation: states, processes, relations
 - Relations enable ility synergies and conflicts identification
- Continuing SERC research creating tools, formal definitions

Backup charts



Tradespace and Affordability Framework


Research Center	Get the Best from People	Staffing, Incentivizing, Teambuilding Facilities, Support Services Kaizen (continuous improvement)
	Make Tasks More Efficient	 Tools and Automation Work and Oversight Streamlining Collaboration Technology
Affordability Improvements	Eliminate Tasks	Lean and Agile Methods Task Automation Model-Based Product Generation
and Tradeoffs	Eliminate Scrap, Rework	Early Risk and Defect Elimination Evidence-Based Decision Gates
		 Modularity Around Sources of Change Incremental, Evolutionary Development Value-Based, Agile Process Maturity
	Simplify Products (KISS)	Risk-Based Prototyping Value-Based Capability Prioritization Satisficing vs. Optimizing Performance
	Reuse Components	Domain Engineering and Architecture Composable Components,Services, COTS Legacy System Repurposing
	Reduce Operations, Support Costs	Automate Operations Elements Design for Maintainability, Evolvability
	Value- and Architecture-Based Tradeoffs and Balancing	 Streamline Supply Chain Anticipate, Prepare for Change

SYSTEMS ENGINEERING Value-Based Testing: Empirical Data and ROI

— LiGuo Huang, ISESE 2005

Value-Neutral Defect Fixing Is Even Worse

SYSTEMS ENGI

Research

NEERING

Product Line Engineering and Management: NPS

SYSTEMS ENGINEERING Research Center		Systen		duct L ue Me	ine Flexib. odel	llity Preferences
		We	lcome \$	SERC (Collaborator	
Open Save Save As)					
System Costs						
Average Product Developmen	t Cost (B	Burdened	\$M) 5		Ownershi	p Time (Years) 3
Annual Change Cost (% of De	velopme	ent Cost)	1	0	Interest R	ate (Annual %) 7
Product Line Percentages F	Relative	Costs of	Reuse	%)		
Unique % 40	Relative	e Cost of	Reuse f	or Ada	pted 40	
Adapted % 30	Relativ	e Cost of	Reuse f	or Reu	sed 5	
Reused % 30						
Investment Cost						
Relative Cost of Developing for	or PL Flex	xibility via	Reuse	1.7		
Calculate						
		Resul	ts			
# of Products	1 2		4	5	6 7	Return on Investment
Development Cost (\$M)		2.7 \$2.7		\$2.7	\$2.7 \$2.7	
Ownership Cost (\$M)	<u> </u>	0.8 \$0.8		\$0.8	\$0.8 \$0.8	
Cum. PL Cost (\$M)	\$9.2 \$	12.7 \$16	2 \$19.7	\$23.1	\$26.6 \$30.1	
PL Flexibility Investment (\$M)	\$2.1 \$	0 \$0	\$0	\$0	\$0 \$0	
PL Effort Savings	(\$2.7) \$	0.3 \$3.3	\$6.3	\$9.4	\$12.4 \$15.4	
Return on Investment	-1.30 0	.14 1.58	3.02	4.46	5.90 7.34	

1 2 3 4 5 6 7

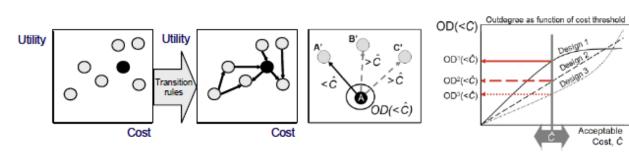
Cost-Schedule Tradespace Analysis

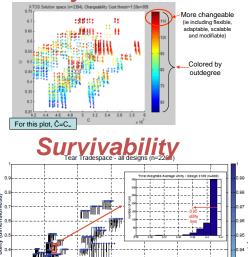
- Generally, reducing schedule adds cost
 - Pair programming: 60% schedule * 2 people = 120% cost
- Increasing schedule may or may not add cost
 - Pre-planned smaller team: less communications overhead
 - Mid-course stretchout: pay longer for tech, admin overhead
- Can often decrease both cost and schedule
 - Lean, agile, value-based methods; product-line reuse
- Can optimize on schedule via concurrent vs. sequential processes
 - Sequential; cost-optimized: Schedule = 3 * cube root (effort)
 - 27 person-months: Schedule = 3*3=9 months; 3 personnel
 - Concurrent, schedule-optimized: Schedule = square root (effort)
 - 27 person-months: Schedule = 5.5 months; 5.4 personnel
- Can also accelerate agile square root schedule

– SERC Expediting SysE study: product, process, people, project, risk
 10-30-2014

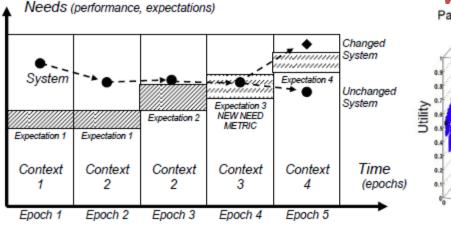
- Ilities Tradespace and Affordability Project (iTAP) foundations
 - More precise ility definitions and relationships
 - Stakeholder value-based, means-ends relationships
 - Ility strategy effects, synergies, conflicts
 - USC, MIT, U. Virginia
- Next-generation system cost-schedule estimation models
 - Initially for full-coverage space systems (COSATMO)
 - Extendable to other domains
 - USC, AFIT, GaTech, NPS
- Applied iTAP methods, processes, and tools (MPTs)
 - For concurrent cyber-physical-human systems
 - Experimental MPT piloting, evolution, improvement
 - Wayne State, AFIT, GaTech, NPS, Penn State, USC

- Co-sponsored by OSD, USAF/SMC
- Focused on current and future satellite systems
 - Accommodating rapid change, evolutionary development, Net-Centric SoSs, families of systems, future security and self-defense needs, microsats, satellite constellations, model-based development
 - Recognizes new draft DoDI 5000.02 process models
 - Hardware-intensive, DoD-unique SW-intensive, Incremental SW-intensive, Accelerated acquisition, 2 Hybrids (HW-, SW-dominant)
 - Covers full life cycle: definition, development, production, operations, support, phaseout
 - Covers full system: satellite(s), ground systems, launch
 - Covers hardware, software, personnel costs
- Extensions to cover systems of systems, families of systems
- Several PhD dissertations involved (as with COSYSMO)
 - Incrementally developed based on priority, data availability
- Upcoming workshop at USC Annual Research Review April 29-May 1




MIT: ilities in Tradespace Exploration

Based on SEAri research


Enabling Construct: Tradespace Networks

Changeability

Enabling Construct: Epochs and Eras

Value Robustness

Pareto Set Tracing across 7 Epochs

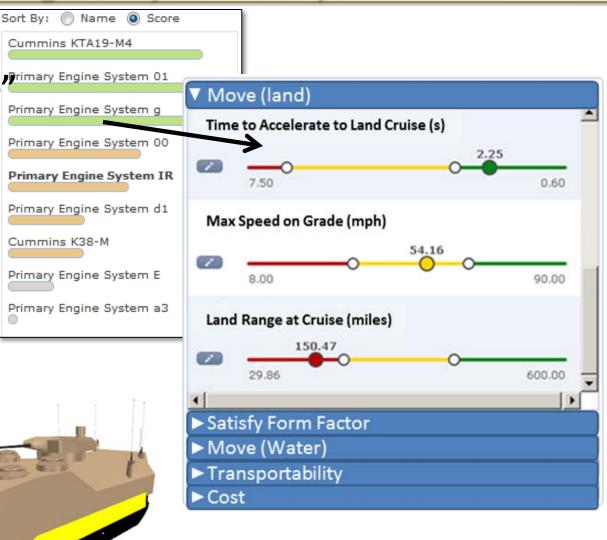
Set of Metrics

lifecycle cost (\$B)

Value Aspect	Acronym	Stands For	Definition			
Robustness via "no change"	NPT	Normalized Pareto Trace	% epochs for which design is Pareto efficient in utility/cost			
Robustness via "no change"	fNPT	Fuzzy Normalized Pareto Trace	Above, with margin from Pareto front allowed			
Robustness via "change"	eNPT, efNPT	Effective (Fuzzy) Normalized Pareto Trace	Above, considering the design's end state after transitioning			
"Value" gap	FPN	Fuzzy Pareto Number	% margin needed to include design in the fuzzy Pareto front			
"Value" of a change	FPS	Fuzzy Pareto Shift	Difference in FPN before and after transition			
"Value" of a change	ARI	Available Rank Increase	# of designs able to be passed in utility via best possible change			
Degree of changeability	OD	Outdegree	# outgoing transition arcs from a design			
Degree of changeability	FOD	Filtered Outdegree	Above, considering only arcs below a chosen cost threshold			
Survivability	TWAUL	Time-weighted Average Utility Loss	Measure of central tendency of value losses over time for a design, as a result of experienced disturbances			
Survivability AT		Threshold Availability	% of lifetime for which design delivers utility above minimum acceptable levels before, during, and after a disturbance			

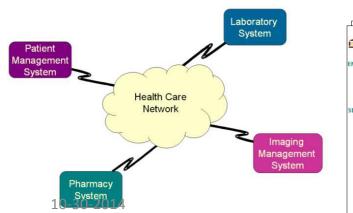
Epoch

GaTech – FACT Tradespace Tool

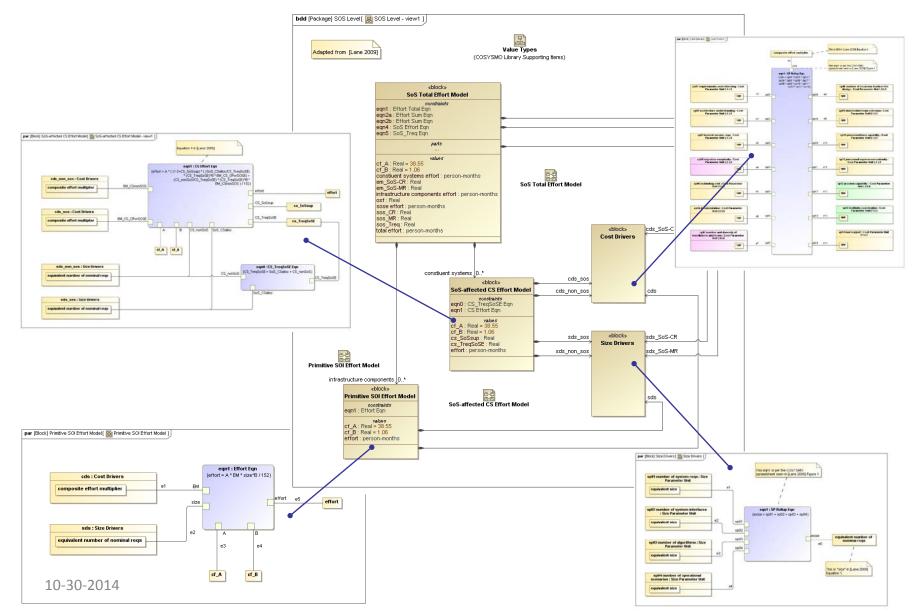

Being used by Marine Corps

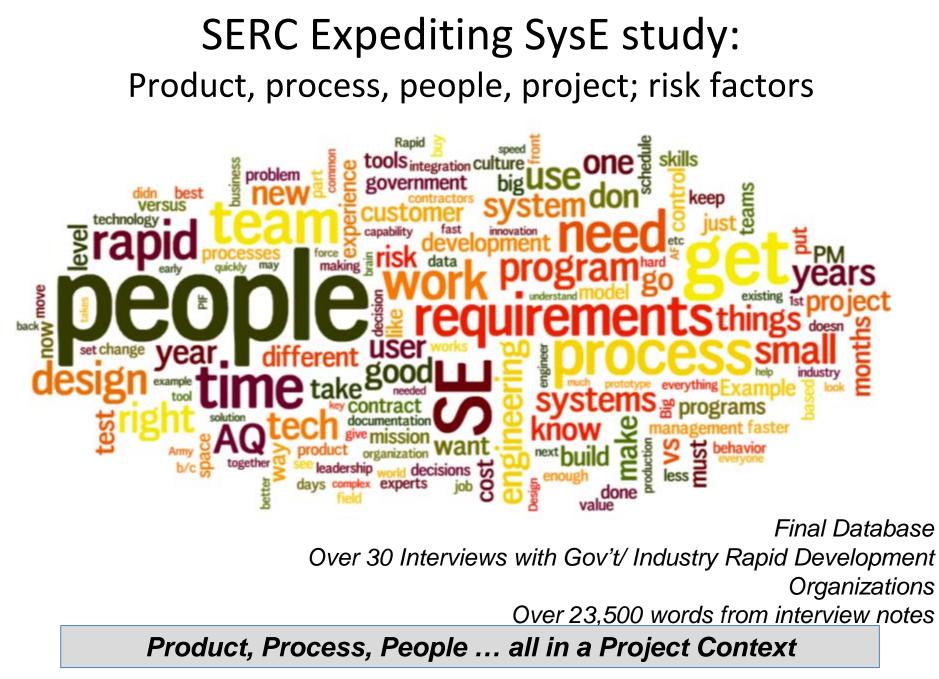
- Configure vehicles from the "bottom up
- Quickly assess impacts on performance

30-2014


SYSTEMS ENGINEERING

Research Center


- Implemented reusable SysML building blocks
 - Based on SoS/COSYSMO SE cost (effort) modeling work by Lane, Valerdi, Boehm, et al.
- Successfully applied building blocks to healthcare SoS case study from [Lane 2009]
- Provides key step towards affordability trade studies involving diverse "-ilities" (*see MIM slides*)



Aspect	Formula	Calculated Effort
SoSE effort (Equation 5)	$ \begin{split} & Effort = 38.55^{*}[((SoS_{CR} / SoS_{TRe})^{1.06} * EM_{505-CR}) + ((SoS_{5Re} / SoS_{TRe})^{1.06} * EM_{505-CR}) + ((SoS_{5Re} / SoS_{TRe})^{1.06} * EM_{505-CR}) / 152 \\ & = 38.55^{*}[((So / 52) * (52)^{1.06} * 2.50) + (20/52)^{1.06} * 0.47 * 10\%)] / 152 \end{split}$	40.41
Pharmacy System effort (Equation 4)	$ \begin{array}{l} \label{eq:constraint} Effort = 38.55* [(1.0+CS_{failup})*((SoS_{Cstated}'CS_{TmgfatE})^{10}(SS_{TmgfatE})^{106} = EM_{C5.CRWIOE}) + \\ (CS_{zmsford}/CS_{TmgfatE})*(CS_{TmgfatE})^{106} * EM_{C5.CRWIOE}) / 152 \\ = 38.55* [(1.15)*((50/70)^{8}(70)^{106} * 1.06 + (20/70)^{8}(70)^{106} * 0.72] / 152 \\ \end{array} $	22.02
Laboratory System effort (Equation 4)	$\begin{array}{l} Effort = 38.55^{+}(1.10+CS_{16500})^{+} \times ((SSG_{CSBM}CS_{Trac[st2]})^{+} (CS_{Trac[st2]})^{+0.68} \times EM_{CSCR8102})^{+} \\ (CS_{ancio}/CS_{Trac[st2]})^{+0.68} \times (CS_{Trac[st2]})^{+0.68} \times (SS_{10})^{+}(SS_{10})^{+} \\ = 3.8.55^{+}(1.15)^{+} ((SOS)0^{+}(SO)^{+0.68} + 1.06 + 0)^{1} / 152 \end{array}$	19.55
Imaging System effort (Equation 4)	$\begin{array}{l} Effort = 38.55^{4} \left((1.0+CS_{action})^{4} \times \left((SSG_{Condex}/CS_{Ting(act)})^{2.06} \times EM_{CSCR0502} \right)^{1.06} \times EM_{CSCR0502} \right)^{4.06} \\ \times \left(CS_{matck}/CS_{Ting(act)} \right)^{1.06} \times EM_{CSm0502} \right)^{1.06} \times \left(SSG_{COND} \right)^{1.06} \\ = 38.55^{4} \left((1.1.5)^{4} \left((GSS)^{00} \right)^{4} (SO)^{160} \times 1.06 + 0 \right) / 152 \end{array}$	19.55
New infrastructure component effort (Equation 1)	Effort = 38 55*EM*(size) ^{1.69} /152 = 38.55 * 1.0 * (100) ^{1.66} / 152	33.43
	Total Effort:	134.96

Healthcare SoS Case Study [Lane 2009] Implemented Using SysML Building Blocks: *Selected SysML Diagrams*

SYSTEMS ENGINEERING Research Center

CORADMO-SE Rating Scales, Schedule Multipliers

High

0.96

simple

Moderate

Very High

0.92

Highly simple

Considerate

Extra High

0.87

Extremely

simple

Extensive

Very Low Nominal Accelerators/Ratings Low **Product Factors** 1.09 1.05 1.0 Extremely Highly Moderately Simplicity Mod. complex complex complex Element Reuse Minimal (15%) None (0%) Some (30%)

Element Reuse	None (0%)	Minimal (15%)	Some (30%)	(50%)	(70%)	(90%)
Low-Priority Deferrals	Never	Rarely	Sometimes	Often	Usually	Anytime
Models vs Documents	None (0%)	Minimal (15%)	nimal (15%) Some (30%) Moderate Considerate (5%) (70%)		Extensive (90%)	
Key Technology Maturity	>0 TRL 1,2 or >1 TRL 3	1 TRL 3 or > 1 TRL 4	1 TRL 4 or > 2 TRL 5	1-2 TRL 5 or >2 TRL 6	1-2 TRL 6	All > TRL 7
Process Factors	1.09	1.05	1.0	0.96	0.92	0.87
Concurrent Operational Concept, Requirements, Architecture, V&V	Highly sequential	Mostly sequential	2 artifacts mostly concurrent	3 artifacts mostly concurrent	All artifacts mostly concurrent	Fully concurrent
Process Streamlining	Heavily bureaucratic	Largely bureaucratic	Conservative bureaucratic	Moderate streamline	Mostly streamlined	Fully streamlined
General SE tool support CIM (Coverage, Integration, Maturity)	Simple tools, weak integration	Minimal CIM	Some CIM	Moderate CIM	Considerable CIM	Extensive CIM
Project Factors	1.08	1.04	1.0	0.96	0.93	0.9
Project size (peak # of personnel)	Over 300	Over 100	Over 30	Over 10	Over 3	≤ 3
Collaboration support	Globally distributed weak comm, data sharing	Nationally distributed, some sharing	Regionally distributed, moderate sharing	Metro-area distributed, good sharing	Simple campus, strong sharing	Largely collocated, Very strong sharing
Single-domain MMPTs (Models, Methods, Processes, Tools)	Simple MMPTs, wcak integration	Minimal CIM	Some CIM	Moderate CIM	Considerable CIM	Extensive CIM
Multi-domain MMPTs	Simple; weak integration	Minimal CIM	Some CIM or not needed	Moderate CIM	Considerable CIM	Extensive CIM
People Factors	1.13	1.06	1.0	0.94	0.89	0.84
General SE KSAs (Knowledge, Skills, Agility)	Weak KSAs	Some KSAs	Moderate KSAs	Good KSAs	Strong KSAs	Very strong KSAs
Single-Domain KSAs	Weak	Some	Moderate	Good	Strong	Very strong
Multi-Domain KSAs	Weak	Some	Moderate or not needed	Good	Strong	Very strong
Team Compatibility	Very difficult interactions	Some difficult interactions	Basically cooperative interactions	Largely cooperative	Highly cooperative	Seamless interactions
Risk Acceptance Factor	1.13	1.06	1.0	0.94	0.89	0.84
	Highly risk- averse	Partly risk- averse	Balanced risk aversion, acceptance	Moderately risk-accepting	Considerably risk-accepting	Strongly risk- accepting

CORADMO-SE Calibration Data

Mostly Commercial; Some DoD

Application Type	Technologies	Person Months	Duration (Months)	Duration /√PM	Product	Process	Project	People	Risk	Multi- plier	Error %
Insurance agency system	HTML/VB	34.94	3.82	0.65	VH	VH	XH	VH	N	0.68	5%
Scientific/engineering	C++	18.66	3.72	0.86	L	VH	VH	VH	N	0.80	-7%
Compliance - expert	HTML/VB	17.89	3.36	0.79	VH	VH	XH	VH	N	0.68	-15%
Barter exchange	SQL/VB/ HTML	112.58	9.54	0.90	VH	Н	Н	VH	N	0.75	-16%
Options exchange site	HTML/SQL	13.94	2.67	0.72	VH	VH	XH	VH	N	0.68	-5%
Commercial HMI	C++	205.27	13.81	0.96	L	N	N	VH	N	0.93	-3%
Options exchange site	HTML	42.41	4.48	0.69	VH	VH	XH	VH	N	0.68	-1%
Time and billing	C++/VB	26.87	4.80	0.93	L	VH	VH	VH	N	0.80	-14%
Hybrid Web/elient-server	VB/HTML	70.93	8.62	1.02	L	N	VH	VH	N	0.87	-15%
ASP	HTML/VB/SQL	9.79	1.39	0.44	VH	VH	XH	VH	N	0.68	53%
On-line billing/tracking	VB/IITML	17.20	2.70	0.65	VII	VH	XH	VH	N	0.68	4%
Palm email client	C/HTML	4.53	1.45	0.68	N	VH	VH	VH	N	0.76	12%

Case Study: From Plan-Driven to Agile Initial Project: Focus on Concurrent SE

Accelerators/Ratings	VL	L	N	H	VH	XH
Product Factors	1.09	1.05	1.0	0.96	0.92	0.87
Simplicity						
Element Reuse	x					
Low-Priority Deferrals	x					
Models vs Documents		x				
Key Technology			X			
Maturity						
Process Factors	1.09	1.05	1.0	0.96	0.92	0.87
Concurrent Operational						
Concept, Requirements,				> x		
Architecture, V&V						
Process Streamlining						
General SE tool support						
CIM (Coverage,				X 🍯		
Integration, Maturity)						
Project Factors	1.08	1.04	1.0	0.96	0.93	0.9
Project size (peak # of				x		
personnel)						
Collaboration support				x		
Single-domain MMPTs						
(Models, Methods,						
Processes, Tools)						
Multi-domain MMPTs		x				
People Factors	1.13	1.06	1.0	0.94	0.89	0.84
General SE KSAs						
(Knowledge, Skills,			X (\leq		
Agility)						
Single-Domain KSAs				x		
Multi-Domain KSAs		x				
Team Compatibility			X 🗸			
Risk Acceptance Factor	1.13	1.06	1.0	0.94	0.89	0.84
* 			x			

Expected schedule reduction of 1.09/0.96 = 0.88 (green arrow) Actual schedule delay of 15% due to side effects (red arrows) Model prediction: 0.88*1.09*1.04*1.06*1.06 = 1.13

Case Study: From Plan-Driven to Agile Next Project: Fix Side Effects; Reduce Bureaucracy

Accelerators/Ratings	VL	L	N	H	VH	XH
Product Factors	1.09	1.05	1.0	0.96	0.92	0.87
Simplicity						
Element Reuse	X					
Low-Priority Deferrals	x					
Models vs Documents		x				
Key Technology					x	
Maturity						
Process Factors	1.09	1.05	1.0	0.96	0.92	0.87
Concurrent Operational						
Concept, Requirements,					>x	
Architecture, V&V						
Process Streamlining				>x		
General SE tool support						
CIM (Coverage,				> x		
Integration, Maturity)						
Project Factors	1.08	1.04	1.0	0.96	0.93	0.9
Project size (peak # of				x		
personnel)				~		
Collaboration support				X		
Single-domain MMPTs						
(Models, Methods,				x		
Processes, Tools)						
Multi-domain MMPTs		x				
People Factors	1.13	1.06	1.0	0.94	0.89	0.84
General SE KSAs						
(Knowledge, Skills,				> x		
Agility)						
Single-Domain KSAs				x		
Multi-Domain KSAs		x				
Team Compatibility				>x		
Risk Acceptance Factor	1.13	1.06	1.0	0.94	0.89	0.84
			X			

Model estimate: $0.88^{(0.92/0.96)^{(0.96/1.05)}} = 0.77$ speedup Project results: 0.8 speedup

Model tracks project status; identifies further speedup potential