Agility in Defense SE & Acquisition: Some Critical Success Factors

Barry Boehm, USC NDIA SE Conference October 30, 2014

Summary

- Agile Defense SE & Acquisition and BBP 3.0
 - Better Buying Power
- Critical success factors vary by life cycle type
 - In-house agile life cycle
 - Outsourced agile development
 - Outsourced agile life cycle
- Other critical success factors
 - Avoiding a herd mentality
 - Process, product, people, project, and risk factors
 - Agility and safety
 - Avoiding one-size-fits-all process models

Agile SE & Acquisition and BBP 3.0

- Eliminate Unproductive Processes and Bureaucracy
 - Reduce cycle times while ensuring sound investments
 - Streamline documentation requirements and staff reviews

- Improve Tradecraft in Acquisition of Services
 - Strengthen contract management outside the normal acquisition chain
- Improve the Professionalization of the Total Acquisition Workforce
 - Strengthen organic engineering capabilities

Critical Success Factors: In-house agile life cycle

- Prepare for early success
 - Highly agile-qualified sponsors and performers
 - Top management buy-in
 - Involve all key organizations
- Choose project with enterprise-wide benefits
 - Based on evidence of critical success factors
 - Process, product, people, project, risk
 - These will indicate when not to go agile as well
 - Emphasize success and commitment to expand usage
- Incrementally expand with aid of initial project benefits

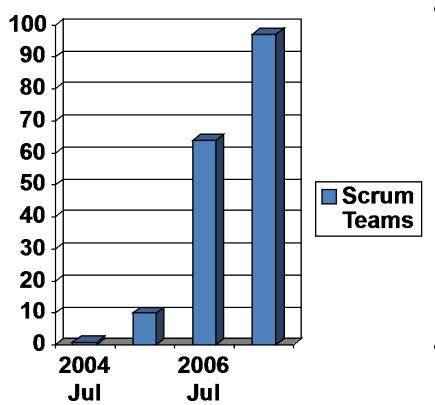
4 Potential Critical Success Factors

From SERC Expedited-SE study

Final Database

Over 30 Interviews with Gov't/ Industry Rapid Development Organizations

Over 23,500 words from interview notes


People, Product, Process ... all in a Project Context

Medical Case Study -- USA

- 1400 software people; 7M SLOC; 7 sites
 - 4 in Europe, 2 in India
- 500 medical applications; 500 financial; others
- Survivability-critical software problems
 - Reliability, productivity, performance, interoperability
 - Sarbanes-Oxley requirements
 - Management receptive to radical change
- Some limited experimental use of agile methods
 - Led by top software technologist/manager
- Committed to total change around Scrum and XP

Medical-USA Adoption Profile

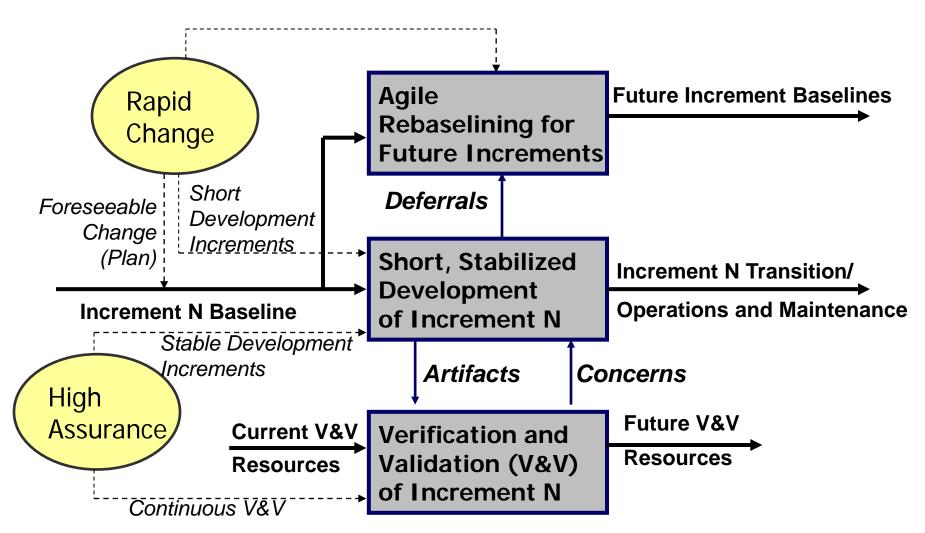
- July 2004 July 2005
 - Recruit top people from all sites into core team(s)
 - Get external expert help
 - Develop architecture
 - Early Scrum successes with infrastructure
 - Revise policies and practices
 - Train, reculture everyone
 - Manage expectations
- July 2005 July 2006
 - Begin full-scale development
 - Core teams as mentors

Key Practices – USA Medical

- Include customers and marketers
 - New roles; do's/don'ts/opportunities; CRACK personnel; full collaboration and teamwork; expectations management
- Scrum; most XP practices; added company practices
 - 6-12 person teams with team rooms, dedicated servers
 - Hourly smoke test; nightly build and regression test
 - Just-in-time analysis; story-point estimates; fail fast; detailed shortterm plans; company architecture compliance
 - Embrace change in applications and practices
 - Global teams: wikis, daily virtual meetings, act as if next-door
- Release management
 - 2-12 week architecting Sprint Zero; 3-10 1-month Sprints; Release Sprint; 1-6 month beta test
 - Next Sprint Zero concurrent with Release Sprint
- Initiative manager and team
 - Define practices; evolve infrastructure; provide training; guide implementation; evaluate compliance/usage; continuous improvement

CSFs: Outsourced Agile Development

- Prepare organization for life-cycle takeover
 - Highly capable in-house development performers, customers
 - AFR 63-123: Committed, representative, authorized, collaborative, knowledgeable
- Evidence-based source selection
 - Reference checking; software engineering exercise
 - Scalability to support full operational capability
 - Committed key personnel
- Significant award fee to developer
 - Flowdown to performers
 - Explicit criteria (Reifer-Boehm 2006); Vested Outsourcing (Vitasek 2011)



CSFs: Outsourced Agile Life Cycle

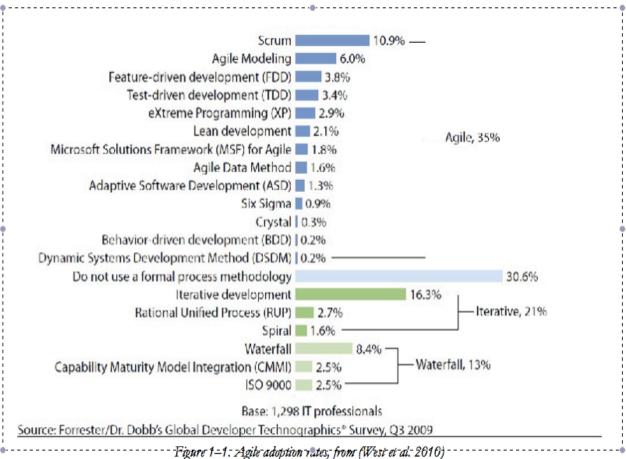
- Similar to agile development outsourcing
 - Highly capable customers
 - AFR 63-123: Committed, representative, authorized, collaborative, knowledgeable
- Evidence-based source selection
 - Reference checking; software engineering exercise
 - Scalability to support full operational capability
 - Committed key personnel
- Evidence-based release decision reviews
 - Acquirers part of agile rebaselining team
- Significant award fee to developer
 - Flowdown to performers
 - Explicit criteria (Reifer-Boehm 2006); Vested Outsourcing (Vitasek 2011)

Evolutionary Spiral Acquisition

Summary

Critical success factors vary by life cycle type

- In-house agile life cycle
- Outsourced agile development
- Outsourced agile life cycle


→ Other critical success factors

- Avoiding a herd mentality
- Process, product, people, project, and risk factors
- Agility and safety
- Avoiding one-size-fits-all process models

Is Everybody Doing Agile?

1991), has come to encompass a range of development techniques now more commonly called agile or lean.

Research on agile/lean scheduling is particularly relevant now that agile/lean methods dominate the

Relative Size of Agile and Architecture Home Grounds

By % of Projects

Criticality, Size Stability	Low (78%)	High (22%)		
High	Either	Arch		
Low (80%)	Agile	Both		

By % of Costs

Criticality, Size Stability	Low (28%)	High (72%)
High	Either	Architecture
Low (80%)	Agile	Both

Based on size distributions in financial sector (Highsmith 2002)

65% small (<10 people)

25% medium (11-50 people)

10% large (>50 people)

CORADMO-SE Rating Scales, Schedule Multipliers

Accelerators/Ratings	Very Low	Low	Nominal	High	Very High	Extra High	
Product Factors	1.09	1.05	1.0	0.96	0.92	0.87	
Simplicity	Extremely complex	Highly complex	Mod. complex	Moderately simple	Highly simple	Extremely simple	
Element Reuse	None (0%)	Minimal (15%)	Some (30%)	Moderate (50%)	Considerate (70%)	Extensive (90%)	
Low-Priority Deferrals	Never	Rarely	Sometimes	Sometimes Often Usually		Anytime	
Models vs Documents	None (0%)	Minimal (15%)	Some (30%)	Moderate (50%)	Considerate (70%)	Extensive (90%)	
Key Technology Maturity	>0 TRL 1,2 or >1 TRL 3	1 TRL 3 or > 1 TRL 4	1 TRL 4 or > 2 TRL 5	1-2 TRL 5 or >2 TRL 6	1-2 TRL 6	All > TRL 7	
Process Factors	1.09	1.05	1.0	0.96	0.92	0.87	
Concurrent Operational Concept, Requirements, Architecture, V&V	Highly sequential	Mostly sequential	2 artifacts mostly concurrent	3 artifacts mostly concurrent	All artifacts mostly concurrent	Fully concurrent	
Process Streamlining	Heavily bureaucratic	Largely bureaucratic	Conservative bureaucratic	Moderate streamline	Mostly streamlined	Fully streamlined	
General SE tool support CIM (Coverage, Integration, Maturity)	Simple tools, weak integration	Minimal CIM	Some CIM	Moderate CIM	Considerable CIM	Extensive CIM	
Project Factors	1.08	1.04	1.0	0.96	0.93	0.9	
Project size (peak # of personnel)	Over 300	Over 100	Over 30	Over 10	Over 3	≤ 3	
Collaboration support	Globally distributed weak comm., data sharing	Nationally distributed, some sharing	Regionally distributed, moderate sharing	Metro-area distributed, good sharing	Simple campus, strong sharing	Largely collocated, Very strong sharing	
Single-domain MMPTs (Models, Methods, Processes, Tools)	Simple MMPTs, weak integration	Minimal CIM	Some CIM	Moderate CIM	Considerable CIM	Extensive CIM	
Multi-domain MMPTs	Simple; weak integration	Minimal CIM	Some CIM or not needed	Moderate CIM	Considerable CIM	Extensive CIM	
People Factors	1.13	1.06	1.0	0.94	0.89	0.84	
General SE KSAs (Knowledge, Skills, Agility)	Weak KSAs	Some KSAs	Moderate KSAs	Moderate Good KSAs Strong KSAs		Very strong KSAs	
Single-Domain KSAs	Weak	Some	Moderate	Good Strong		Very strong	
Multi-Domain KSAs	Weak	Some	Moderate or not needed	Good	Strong	Very strong	
Team Compatibility	Very difficult interactions	Some difficult interactions	Basically cooperative interactions	Largely cooperative	0)		
Risk Acceptance Factor	1.13	1.06	1.0	0.94	0.89	0.84	
	Highly risk- averse	Partly risk- averse	Balanced risk aversion, acceptance	Moderately risk-accepting	Considerably risk-accepting	Strongly risk- accepting	

CORADMO-SE Calibration Data

Mostly Commercial; Some DoD

Application Type	Technologies	Person Months	Duration (Months)	Duration /√PM	Product	Process	Project	People	Risk	Multi- plier	Error %
Insurance agency system	HTML/VB	34.94	3.82	0.65	VH	VH	ХН	VH	N	0.68	5%
Scientific/engineering	C++	18.66	3.72	0.86	L	VH	VH	VH	N	0.80	-7%
Compliance - expert	HTML/VB	17.89	3.36	0.79	VH	VH	XH	VH	N	0.68	-15%
Barter exchange	SQL/VB/ HTML	112.58	9.54	0.90	VH	Н	Н	VH	N	0.75	-16%
Options exchange site	HTML/SQL	13.94	2.67	0.72	VH	VH	ХН	VH	N	0.68	-5%
Commercial HMI	C++	205.27	13.81	0.96	L	N	N	VH	N	0.93	-3%
Options exchange site	HTML	42.41	4.48	0.69	VH	VH	ХН	VH	N	0.68	-1%
Time and billing	C++/VB	26.87	4.80	0.93	L	VH	VH	VH	N	0.80	-14%
Hybrid Web/elient-server	VB/HTML	70.93	8.62	1.02	L	N	VH	VH	N	0.87	-15%
ASP	HTML/VB/SQL	9.79	1.39	0.44	VH	VH	ХН	VH	N	0.68	53%
On-line billing/tracking	VB/HTML	17.20	2.70	0.65	VII	VII	XII	VII	N	0.68	4%
Palm email client	C/HTML	4.53	1.45	0.68	N	VH	VH	VH	N	0.76	12%

Agility and Safety Failure Examples

- Responding to change over following a plan
 - Source of software-induced rocket failures
- Easiest-first features; safety as deferrable feature
 - Can't make unsafe code safe via refactoring
- Nominal-case test-first
 - Fixing defects in next release
- Safety novices
 - No knowledge of hazard analysis, fault tree analysis, failure modes and effects analysis; redundancy and recovery techniques; COTS safety risk analysis

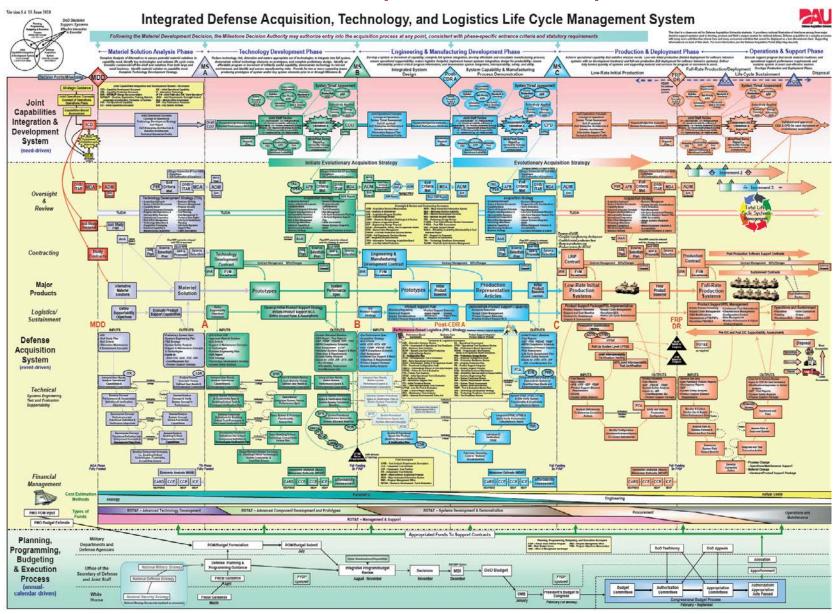
Agility and Safety: Under What Conditions?

- Praxis-level development teams
 - Safety-savvy; thorough; collaborative; change-adaptive
- Architected agile process
 - With validated feasibility evidence, change control
- Providing adequate budget and schedule
 - For safe development practices, V&V
- Avoiding unsafe agile practices
 - Collective code ownership; change trumps following plans; simple design; next-increment defect fixing; safety as deferrable feature
- Using safety-enhancing agile practices
 - Pair development; coding standards; safety-oriented testfirst; continuous integration

Summary

- Critical success factors vary by life cycle type
 - In-house agile life cycle
 - Outsourced agile development
 - Outsourced agile life cycle
- Other critical success factors
 - Avoiding a herd mentality
 - Process, product, people, project, and risk factors
 - Agility and safety
- Avoiding one-size-fits-all process models

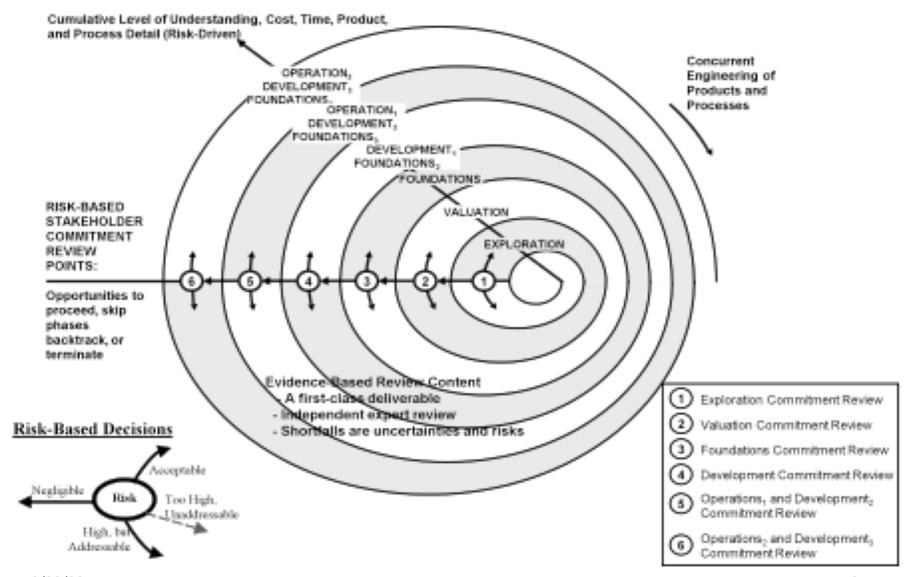
The Procrustean Bed: Dangers of one-size fits-all process models


- Procrustes: Greek Mythology
 - Rogue smith and bandit
 - Hostel with one-size-fits-all bed
 - Guests too small: stretch them to fit
 - Guests too large: lop off the offending parts

Build Your Own Procrustean Bed

- Pure Waterfall, Vee: Fixed Price and Spec Contract
 - Lop off needed changes as requirements creep
- Pure Agile: Easiest First; Dedicated On-Site Customer
 - Later scalability and assurance problems; single-failure point
- Voice of the Customer: Accept All "Requirements"
 - Gold-plating; neglect voices of acquirer, developer, owner
- Piling on Incompatible Constraints: No Way Out
 - Project Example: Waterfall, COTS, Ada, GOTS Reuse
- Inflexible Standards: No Choice But Tailoring Down
 - MIL-STD-498: choice of 23, 6, or 1 DID denied
- Overconstrained Maturity Models: Excluding Expertise
 - Software CMM: Exclude software group from system rqts.

Procrustean Example: DoD Acquisition Process


Progress: US DoDI 5000.02 2013-11-13

- 4 Swim Lanes + 2 Hybrids
- Model 1: Hardware Intensive Program
- Model 2: Defense Unique SW-Intensive Program
- Model 3: Incrementally Fielded SW-Intensive Program
- Model 4: Accelerated Acquisition Program

- Hybrid Program A (Hardware Dominant)
- Hybrid Program B (Software Dominant)

SYSTEMS ENGINEERING The Incremental Commitment Spiral Model (ICSM)

Common Risk-Driven Special Cases of the ICSM (Cases 1-4)

Case 1: Use NDI

Example: Small accounting system

Size, Complexity: Size variable, complexity low **Typical Change Rate/Month:** Negligible

Criticality: n/a

NDI Support: Complete

Organizational Personnel Capability: NDI-experienced (medium)
Key Stage I Activities (Incremental Definition): Acquire NDI
Key Stage II Activities (Incremental Development/Operations): Use

NDI

Time/Build: n/a

Time/Increment: Vendor-driven

Case 3: Architected Agile

Example: Business data processing

Size, Complexity: Medium

Typical Change Rate/Month: 1-10 %

Criticality: Medium to high

NDI Support: Good, most in place

Organizational Personnel Capability: Agile-ready, medium to high

experience

Key Stage I Activities (Incremental Definition): Combine Valuation,

Architecting phases. Complete NDI preparation.

Key Stage II Activities (Incremental Development/Operations):

Architecture-based Scrum of Scrums

Time/Build: 2-4 weeks

Time/Increment: 2-6 months

Case 2: Agile

Example: E-services **Size, Complexity:** Low

Typical Change Rate/Month: 1-30%

Criticality: Low to medium **NDI Support:** Good, in place

Organizational Personnel Capability: Agile-ready, medium-high

experience

Key Stage I Activities (Incremental Definition): Skip Valuation and

Architecting phases

Key Stage II Activities (Incremental Development/Operations): Scrum

plus agile methods of choice

Time/Build: <= 1 day

Time/Increment: 2-6 weeks

Case 4: Formal Methods

Example: Security kernel; Safety-critical LSI chip

Size, Complexity: Low

Typical Change Rate/Month: 0.3%

Criticality: Extra high NDI Support: None

Organizational Personnel Capability: Strong formal methods experience

Key Stage I Activities (Incremental Definition): Precise formal

specification

Key Stage II Activities (Incremental Development/Operations):

Formally-based programming language; formal verification

Time/Build: 1-5 days

Time/Increment: 1-4 weeks

Conclusions

- Success-critical to achieve both agility and quality
- Hybrid architected-agile methods emerging
 - Incremental commitment framework
 - Early development, validation of scalable architecture
 - Concurrent engineering with synchronization milestones
 - Scrum plus organizational essentials
- Success stories emerging
 - Management commitment to objectives and strategy
 - With incremental feasibility checkpoints
 - Strong core team of technical and management leaders
 - Thorough preparation of organizations, people, infrastructure
 - Involvement, architecture, policies, practices, plans, training
 - Incentives to address both agility and quality
 - Continuous change monitoring and adaptation