Aerospace Vehicle Systems Institute

SAVI Support of DoD Architecture Centric Virtual Integration

System Architecture Virtual Integration Program

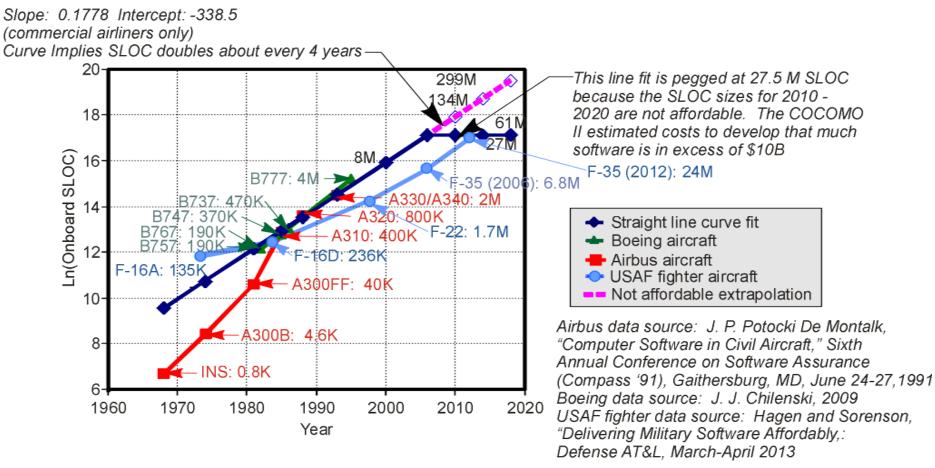
Dr. David Redman, Dr. Don Ward AVSI Mr. Martin Walsh ADD/AMRDEC, RDECOM

Mr. Bruce Lewis SED/AMRDEC, RDECOM

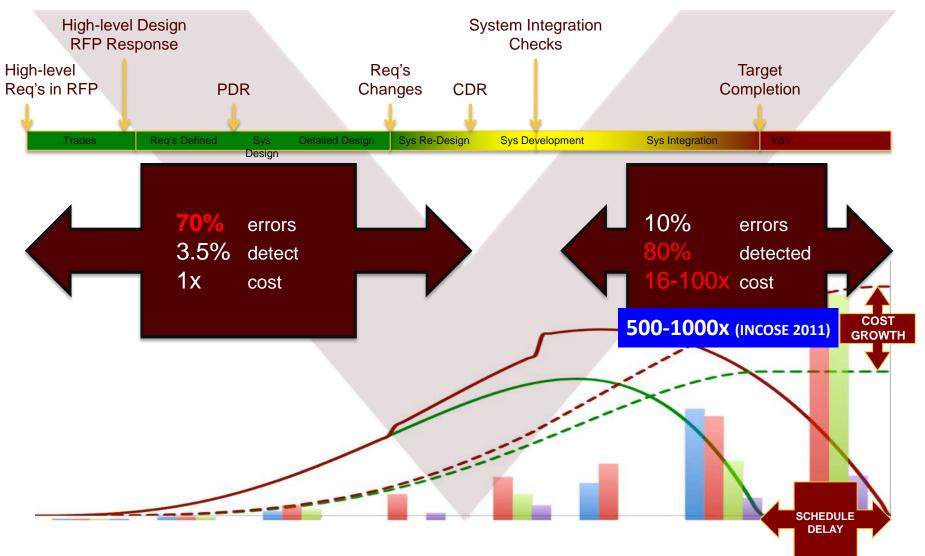
NDIA Systems Engineering Conference 30 October 2014

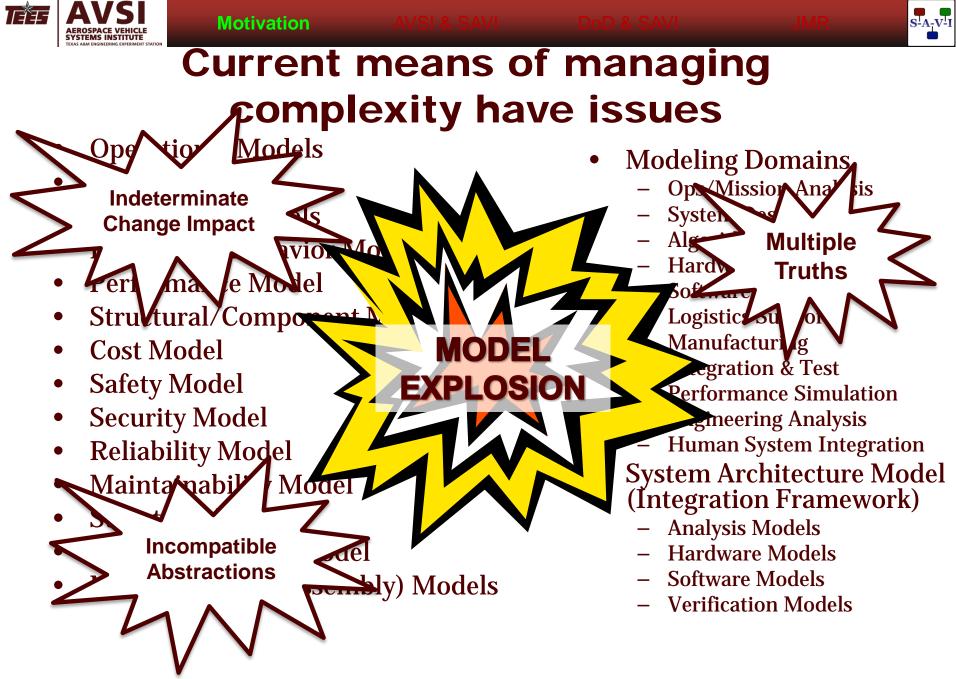
"DISTRIBUTION STATEMENT A. Approved for public release."

Agenda


- Motivation for Virtual Integration
- AVSI and the SAVI Program
- DoD Participation in SAVI
- The JMR TD/MSAD Program
- Conclusion / Q&A

MOTIVATION FOR VIRTUAL INTEGRATION


Systems Are Becoming More Complex


Estimated Onboard SLOC Growth

The impact is documented

- Integration complexity will continue to increase
- Current solutions are insufficient

Motivation

- Individual companies cannot solve it alone
- Industry cannot afford to solve it multiple times
- We can't afford not to solve it

A coordinated, industry-wide effort is needed to solve this issue.

THE SYSTEM ARCHITECTURE VIRTUAL INTEGRATION PROGRAM

The Aerospace Vehicle Systems Institute

Full Members

- Airbus
- Boeing
- DoD
- Airbus Group
- Embraer
- GE Aviation
- Honeywell
- Rockwell Collins
- Rolls Royce
- Saab
- United Technologies

<u>Liaison</u>	<u>Members</u>

- FAA
- NASA
- Aerospace Valley
- SEI

Associate Members

- ATI Wah-Chang
- BAE Systems
- Lockheed Martin
- Rafael D. S.
- SAES-Getters

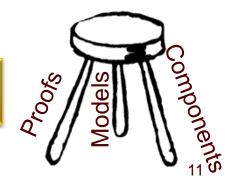
TEEFS AVSI AEROSPACE VEHICLE TXXX AM ENGINEERING EXPERIMENT STATE

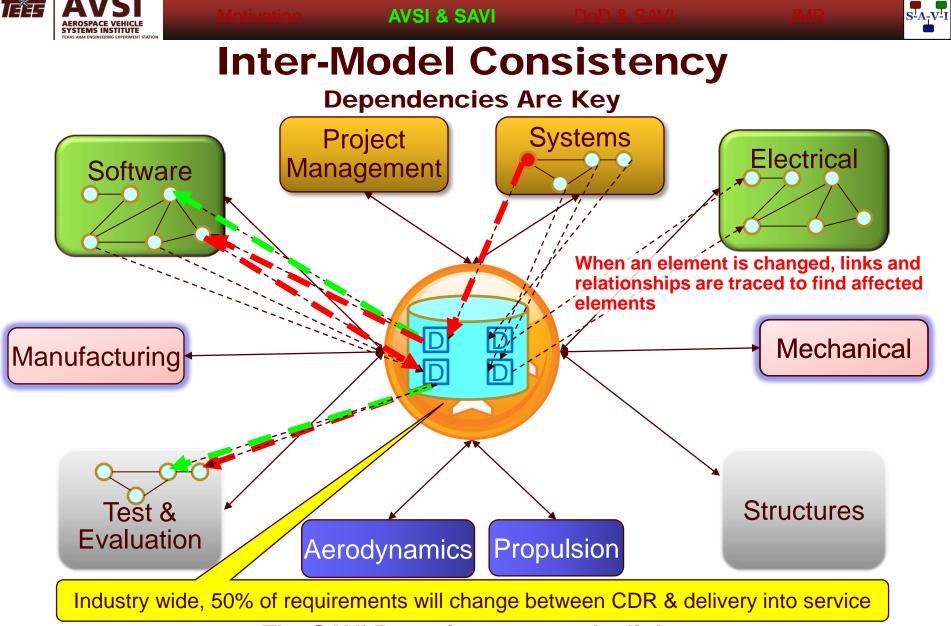
SAVI Goals and Approach

- SAVI target/goals (summary)
 - Reduce costs/development time through early and continuous model-based virtual integration

AVSI & SAVI

- Distributed inter-domain/inter-model consistency checks throughout development - (start integrated, stay integrated)
- Protect intellectual property (IP)
- Capture incremental evidence for safety analysis and for certification Approach
- Capture Requirements and Use Cases that define the following:
 - SAVI Data Exchange Layer
 - SAVI Model Repository
 - SAVI Virtual Integration Process (VIP)
 - SAVI distributed inter-domain/inter-model dependencies and consistency checks



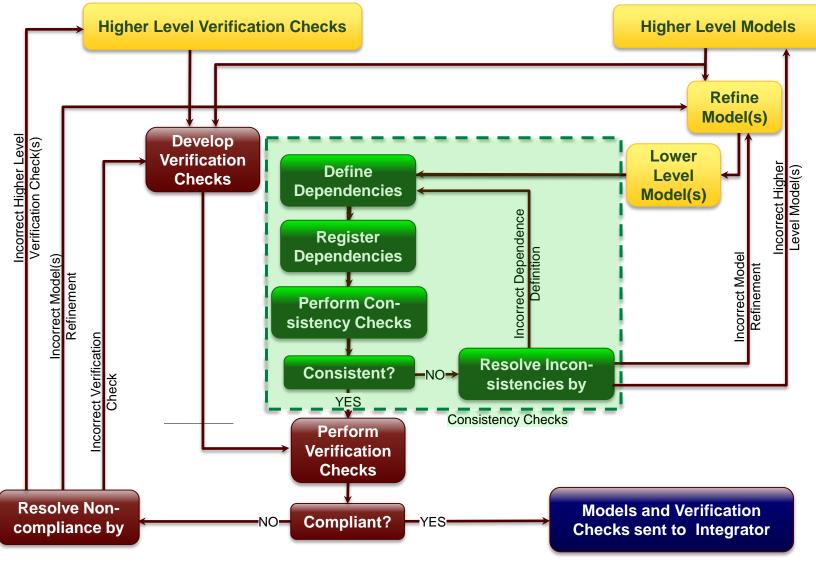


SAVI Objective and Themes

- Reduce costs/development time through early and continuous model-based virtual integration
 - Shift to new paradigm integrated models rather than documents
 - Systems engineering in cross-domain context
 - Models provide basis for improvements
 - Models promote consistency "absence of contradictions"
 - Architecture-centric approach start with models, but more
 - Meld with requirements for traceability
 - Facilitate trade studies
 - Virtual Integration early and continuous integrated analysis
 - Proof-based (consistency checked but not all with formal models)
 - Component-based (hierarchical models)
 - Model-based (annotated models)

Integrate, analyze ... then build"

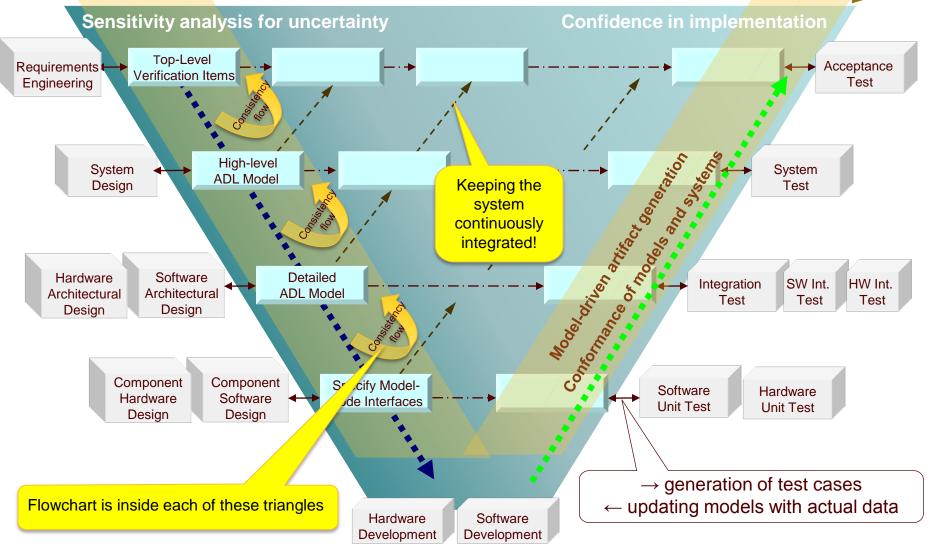
The SAVI Repository stores the links


Motivatio

AVSI & SAVI

DoD & SAVI

S-A-V-I


SAVI VIP

S^IA-V^II

SAVI Virtual Integration "Vee"

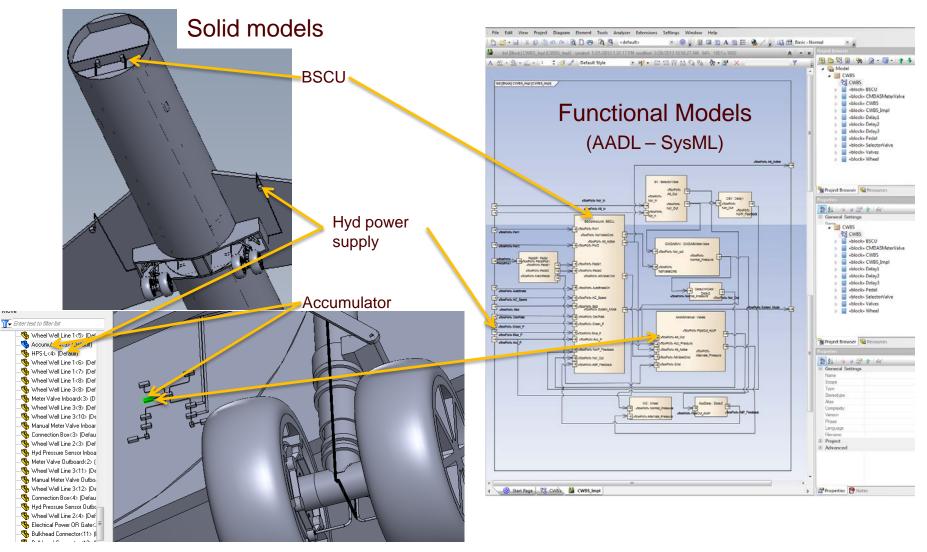
30 October 2014

NDIA Systems Engineering Conference 2014 © AVSI

INITIAL VIP CAPABILITY VERSION 1.0A - 2013

S-A-V-I

- Selected as a pathfinder/demonstration for SAVI analysis
 - Existing "S-18 Aircraft" wheel braking system (WBS) in Aerospace Information Report (AIR) 6110
 - Example of 4754A development process and supporting 4761 safety analysis
 - Specific focus on WBS PSSA within process flow
- Highlight the iterative design process
 - First safety evaluation
 - Refinement through system development
- Enable trade-studies incorporating safety
- Use of commercial and open-source tools
 - Industry standard or low/no cost tools and capabilities in SAVI infrastructure


AFE 61 Model Overview

- The model set for the AFE 61 WBS PSSA consists of five models for the simplified WBS
 - A set of requirements from AIR 6110 (Spreadsheet)
 - A Publisher/Subscriber model forming the basis for an ICD later in the project (Spreadsheet)
 - A SysML model documenting the architecture at the beginning of the project (Enterprise Architect, SCADE System)
 - An AADL model documenting the refined (final) architecture model at the end of the project (OSATE)
 - Along with the associated Error Model supporting the automated safety analyses
 - A solid geometry model documenting the location of components in 3-space (Solidworks, NX)

Inter-Model Consistency Checks

30 October 2014

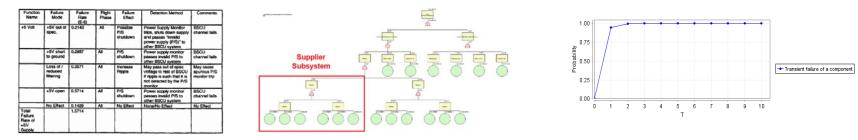
NDIA Systems Engineering Conference 2014 © AVSI

30 October 2014

Error Sources

NoServic

NoPressur


Software and/o

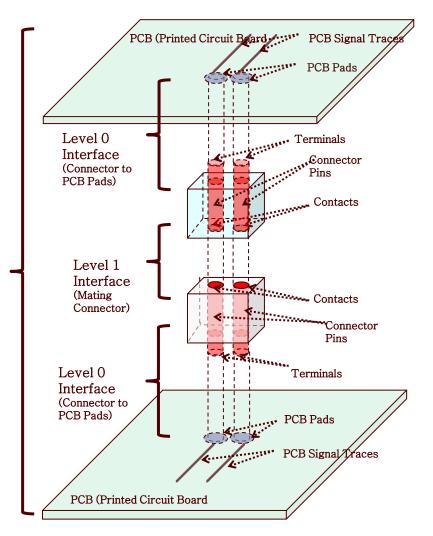
AVSI & SAVI

- Use of Error Model EMV2 and ARINC653 annexes
 - Relevance for the avionics community

- Comparative architecture trade study
 - Federated vs. Integrated Modular Avionics (IMA) architecture

- Support of SAE ARP 4761 System Safety Assessment Practice
 - Hazards (FHA), Fault Trees (FTA), Fault Impact (FMEA)
 - Reliability/Availability Markov Analysis (MA)/Dependence Diagram(DD)

NDIA Systems Engineering Conference 2014 © AVSI


S^TA-V^TI

CAPABILITIES BEING ADDED VERSION 1.0B - 2014

AFE 61S1 (2014) Use Cases

- Printed Circuit Board
 Interconnect
 - Prove physical implementation matches (is consistent with) the logical design (schematic)
 - Demonstrate use of PLCS data model for cross-domain consistency
- Future: expand use case to include wiring harnesses

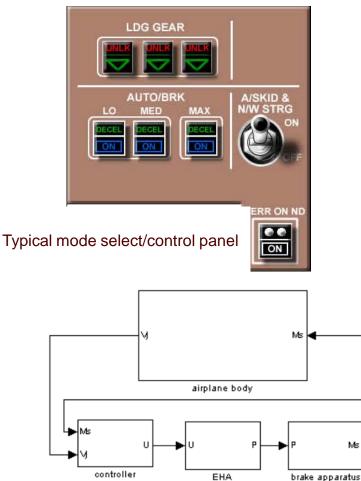
Interface

(PCB Signal

PCB Signal

Trace to

Trace)

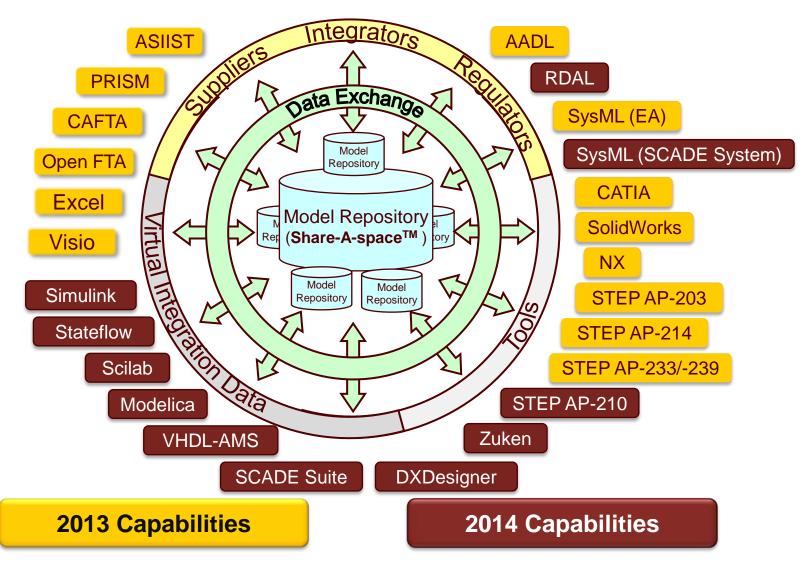


AFE 61S1 (2014) Use Cases

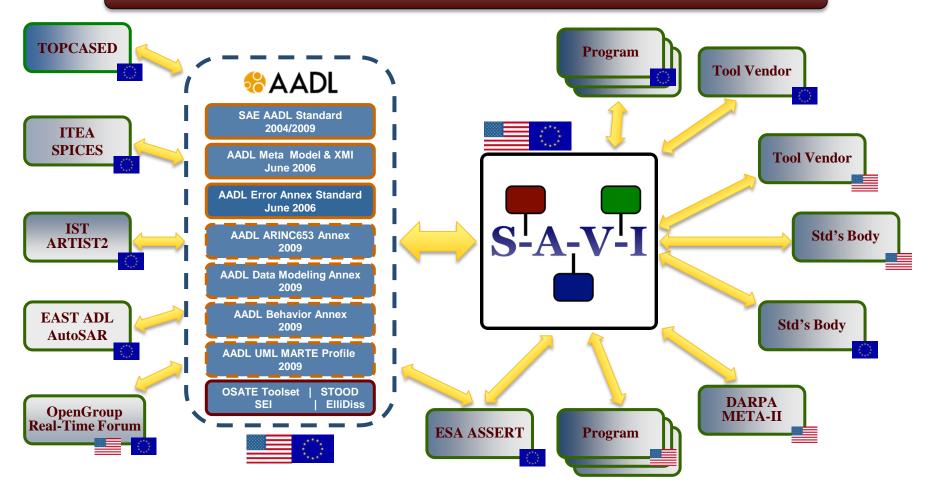
 Autobrake/antiskid enabled

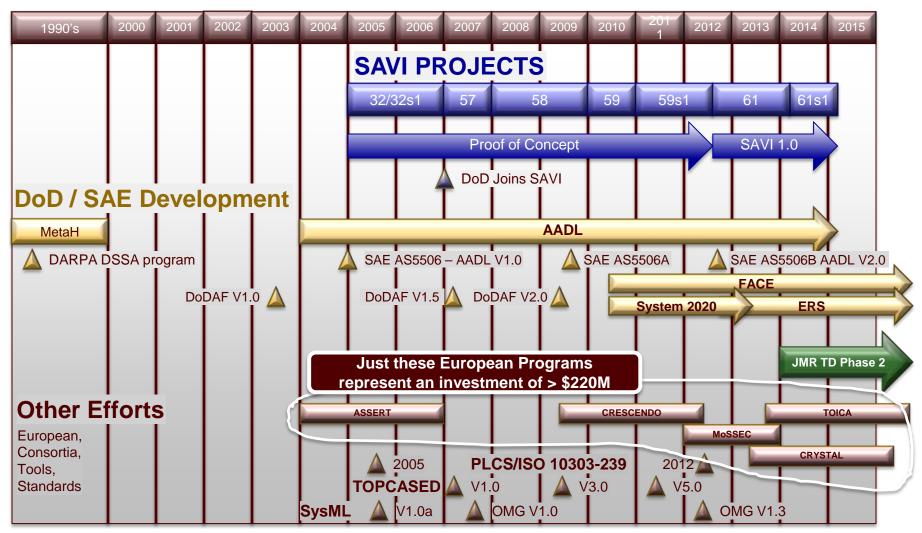
151-

- Multiple communicating state machines
- Multiple communicating control laws
- Electro-mechanical braking system
 - Adds multi-physics simulation models to the mix



Develop behavioral modeling capability


AFE 61S1 Model Map


Collaboration is Central to SAVI

A coordinated, industry-wide effort is needed to solve this issue.

Sustained Efforts Toward Architecture Centric System Development

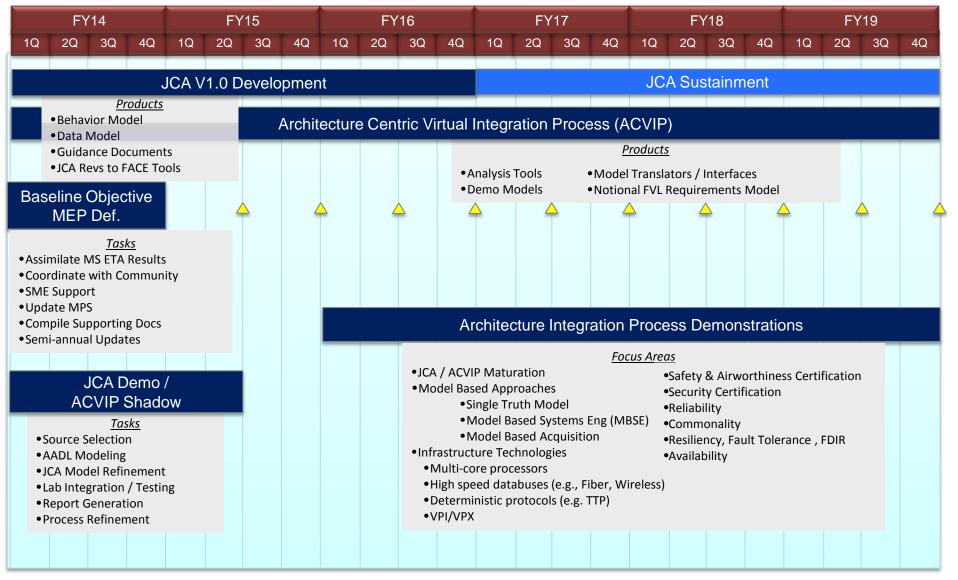
NDIA Systems Engineering Conference 2014 © AVSI

JMR TD Mission Systems Architecture Demonstration (MSAD)

- Background: It is too early to design a mission equipment package (MEP) or mission systems architecture for FVL
- Objective: Provide FVL development with the tools, information and processes necessary to design and implement a mission system suite that is effective and affordable
- Approach: Develop and validate new approaches through:
 - Analysis
 - Modeling and Simulation
 - Laboratory instantiation and test
- Products for transition to FVL
 - Standards
 - Processes
 - Tools

Focuses on *concepts, tools and processes*, not an objective design for an FVL MEP or architecture

MSAD Approach


- The Mission Systems Architecture Demonstration (MSAD) consists of a series of increasing complex demonstrations directly relevant to FVL implementation
- Investigate the challenges related to implementing a mission systems architecture for FVL
 - Safety & Airworthiness Certification
 - Security Certification
 - Reliability
 - Commonality
 - Resiliency
- Determine the best ways of overcoming the challenges using existing and emerging technologies and methodologies.
 - Open Systems Architecture (OSA)
 - Model Based Systems Engineering (MBSE)
 - Architecture Centric Virtual Integration Process (ACVIP)
- Demonstrate the utility of the technologies and methodologies and invest in enhancements / maturation.
- Define processes for implementing the technologies and methodologies across development community (fleet manager, PM, requirements generator, certifier, systems integrator, component developers, etc.).

Provide FVL with the guidance and infrastructure to succeed

MSAD Schedule

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

FVL DOD Organization

Vertical Lift Consortium Mission/Membership

Large Contractor

EADS North America Northrop Grumman Corporation Raytheon

Large OEMs

Bell Helicopter Lockheed Martin Corporation Sikorsky Aircraft Corporation The Boeing Company

Supplier

D-Strut Dynetics, Inc. Galorath Honeywell Howell Instrument Lord Corporation Precision Gear, Inc. PRICE Systems LLC SELEX Galileo United Technologies Aerospace Systems United Technologies Research Center (UTRC)

www.verticalliftconsortium.org

Non-Traditional Contractor

Altair Engineering Blue Force Technologies Clausewitz Technology duPont Aerospace Company, Inc. EMTEQ Groen Brothers Aviation Global MD Helicopters Modus Aircraft Parker Ostovich & Associates Peduzzi Associates, Ltd. RMCI

Small VTOL R&D Acellent Technologies Advanced Optical Systems Advanced Rotorcraft Technology AVID LLC AVX Aircraft Company Clockwork Solutions LLC Continuum Dynamics, Inc. Karem Aircraft, Inc. Mide Technology Corp. Piasecki Aircraft Corp. Saddle Butte Systems, LLC Sentinent Corporation Texas Research Institute Austin, Inc.

Engine

Advanced Turbine Engine Company GE Aviation Pratt & Whitney Rolls-Royce Corporation

Academic/Non-Profit

Georgia Institute of Technology The Ohio State University The Pennsylvania State University University of Alabama in Huntsville University of Illinois at Chicago University of Maryland University of Maryland University of Michigan University of Notre Dame University of South Carolina University of Tennessee University of Texas - Arlington

AHS AHS International

Mission: Work collaboratively...to develop and transition innovative vertical lift technologies to rapidly and affordably meet warfighter needs.

SAVI Aligns with DoD Objectives

Systems 2020

- DEVELOP FAST: 3x reduction in time to acquisition
- FLEXIBLE: 4x reduction in time to update
- ADAPTABLE: intrinsic mission adaptability

Engineered Resilient Systems

- Informed Decision Making
- Trustworthy and Adaptable Design
- Affordable and Timely

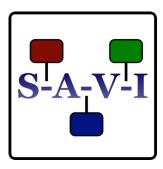
FACE

- Standard COE to support portable applications across DoD avionics systems
- Reduce life cycle costs and time to field
- Facilitate conformance with standards to maximize interoperability

JMR TD / MSAD

 Provide FVL development with the tools, information and processes necessary to design and implement a mission system suite that is effective and affordable

- Architecture-centric enables patterns and reuse
- Enhanced trade space for analysis of potential architectures for metrics such as adaptability
- Manage dependencies for consistency and change impact
- Reduce time and schedule by reducing rework
- Leverage best practices and existing standards
- Standards-based Virtual Integration Process
- Architecture-centric, semantically precise models to enable quantitative systems analyses
- Tool agnostic to leverage domain-specific expertise and sunk investment in tools
- Standards-based Virtual Integration Process to promote broad adoption and interoperability throughout the supply chain


30 October 2014

NDIA Systems Engineering Conference 2014 © AVSI

Questions?

Contacts:

Dr. Don Ward

Office: (979) 862-2316

Mobile: (979) 218-2272

dredman@avsi.aero

http://www.avsi.aero

http://savi.avsi.aero

Dr. Dave Redman Office: (979) 862-2316 Mobile: (979) 218-2272 <u>dredman@avsi.aero</u>

References

System 2020:

 Scott Lucero, Presentation at 2010 NDIA Systems Engineering Conference, obtained from <u>http://www.ndia.org/Divisions/Divisions/SystemsEngineering/Docum</u> <u>ents/Committees/M_S%20Committee/2010/June%202010/Lucero_</u> NDIA-SE-MS_2010-06-15.pdf on 10/1/2014.

FACE

 Face 101 presentation obtained from <u>http://www.opengroup.org/face/face101</u> (redirect to <u>http://www.youtube.com/watch?v=KmLJcewvHis</u>) on 10/1/2014.

<u>ERS</u>

 Dr. Randy Avent and Dr. Robert Neches, Presentation to NDIA/DoD Annual S&T Conference 20-23 June 2011, obtained from <u>http://www.dtic.mil/ndia/2011SET/Avent3.pdf</u> on 10/1/2014.

List of Acronyms

AADL	Architecture Analysis and Design Language	ISO	International Organization for Standardization
ACVIP	Architecture-Centric Virtual Integration Process	JCA	Joint Capability Area
ADL	Architecuture Description Language	JMR TD	Joint Multi Role Technology Demonstrator
AFE	Authority for Expenditure	MBSE	Model Based Systems Engineering
AIR	Aerospace Information Report	MEP	Mission Equipment Package
AMRDEC	Aviation and Missile Research Development and	MoSSEC	Modelling and Simulation in Collaborative Systems Engineering
	Engineering Center		Context
ARINC	Aeronautical Radio, Incorporated	MSAD	Mission Systems Architecture Demonstration
ARP	Aerospace Recommended Practice	NASA	National Aeronautics and Space Administration
ASSERT	Automated proof-based System and Software	NDIA	National Defense Industrial Association
	Engineering for Real-Time applications	OMG	Object Management Group
AutoSAR	AUTomotive Open System ARchitecture	OSA	Open System Architecture
AVSI	Aerospace Vehicle Systems Institute	PCB	Printed Circuit Board
BSCU	Brake System Control Unit	PDR	Preliminary Design Review
CDR	Critical Design review	PEO AVN	Program Executive Office Aviation
COE	Common Operating Environment	PLCS	Product Life Cycle Support
CRESCENDO	Collaborative and Robust Engineering using Simulation	PM	Program Manager
	Capability Enabling Next Design Optimisation	PSSA	Preliminary System Safety Assessment
CRYSTAL	CRitical sYSTem engineering AcceLeration	RDECOM	Research, Development and Engineering Command
DARPA	Defense Advanced Research Projects Agency	RFP	Request for Proposal
DoD	Department of Defense	S&T IPT	Science and Technology Integrated Product Team
DoDAF	Department of Defense Architecture Framework	SAE	Society of Automotive Engineers (SAE, Inc.)
DSSA	Domain-Specific Software Architecture	SAVI	System Architecture Virtual Integration
EMV2	Error Model annex Version 2	SCADE	Safety-Critical Application Development Environment (Esterel)
ERS	Engineered Resilient Systems	SEI	Software Engineering Institute at Carnegie Mellon Univeristy
ESA	European Space Agency	SLOC	Source Lines of Code
FAA	Federal Aviation Administration	SME	Subject Matter Expert
FACE	Future Airborne Capability Environment	SW	Software
FHA	Functional Hazard Assessment	SysML	Systems Modeling Language
FMEA	Failure Modes and Effects Analysis	TOICA	Thermal Overall Integrated Conception of Aircraft
FTA	Fault Tree Analysis	TOPCASED	Toolkit in OPen source for Critical Applications and SystEm
FVL	Future Vertical Lift		Development
HW	Hardware	TTP	Time-Triggered Protocol
ICD	Interface Control Document	USAACE CEAD	U.S. Army Aviation Center of Excellence / Concepts,
IMA	Integrated Modular Avionics		Experimentation, and Analysis Directorate
INCOSE	International Council on Systems Engineering	VIP	Virtual Integration Process
IP	Intellectual Property	WBS	Wheel Braking System

30 October 2014

NDIA Systems Engineering Conference 2014 © AVSI