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Today’s Outline worTror s

\

Using existing disparate models

Can validate architectural choices quickly, efficiently, and optimally




How can Model Based Engineering (MBE) be NORTHROP GRUMMAN
Implemented on a program? -

 Many use MBE successfully
today...

— Solving hard problems

Primary MBE scope to date

- Flndlng new novel SO|Ut|0nS Capability Mission / Operational Capability

Architecture Architecture and Capabilities Integration

Solution (Systems and Services)

° U nfo rtu n ate Iy’ m OSt h ave bee n Architecture and Functionality
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— Models are typically limited to a
discipline, limiting the trade space
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A Cohesive Process Using Integrated Modeling =~ ™77 ===

Radar Product

(

Software ]

Processor

Hardware ]

* The Mission Systems

Engineering group at
Northrop Grumman
decided to take the next
step

6-Step process for
Integrating models

— “Integrated Model
Framework”

— Phoenix Integration’s
MBSEPak®

* Will integrated models

enable better/quicker
system level decisions?
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Investigating Radar Performance vs. Cost Over a NoRTHROR GRUMNMAN
Variety of Generic Platforms -
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Utilizing Disparately Designed Models to NORTHROP GRUMMAN

Modeling ‘\y@/
L (SysML)

Perform Trade Analysis -
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System level models from different departments inherently share information




DOORS® or Excel®
Requirements

Power Consumption
Radar System Weight

Probability of Detection

Signal to Noise Ratio

e Requirement Specifications brought into Rhapsody®

e Lower and Upper Bounds can be established in Rhapsody®
— Requirement goals are established



Setting up the System Architecture PATHIOP CRUSEIAN
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 Generate an Architecture based

Step 2: Decompose Visio/Initial Block Diagrams
to Rhapsody Block Definition Diagrams

on requirements

Microsoft
Office

Visio Block
Diagrams

Rhapsody®
Block
Definition
Diagrams

 Typically designs are created in
Visio

— Visio does not offer the traceability

needed in this process Shee=

» Manually decompose Visio . I
diagrams into SysML Block gy | -y || w2
Definition Diagrams = ] 1
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Step 2: System Architecture Connects to

Requirements

IBM Rational Rhapsody®

NORTHROFP GRUMMAN

System Attribu

«Blocke

<At =
CNR[100]:double

«Altritites
ProbDet[100]:dov

<At =
SNR[100]:double

tes

StructurezAirborne_Radar

Requirements

«PropertySasedRequinement»
CMNR.

D=8

For an airborne radar, the

dutter-to-noise ratio shall be greater
than or equal to 15dBE at the range
center.

y 4

+ Proper—ty SasmdRmuinem:
Probability Of De

ID=9
----------- —

For an airbgfne radar, the probability
detectigpfshall be greater than orpefal
to 0.# at the range center
v 4
V PropertyE et
SR

= Altrit e
radarCost:double

e

o Establish a connection
between Requirements and
System Architecture

— Traceability

e Link attributes of system
/ performance to Requirements
— Clutter-Noise-Ratio

— Probability of Detect

— Signal-To-Noise Ratio

— Radar Cost

ssatisfy
airborne radar, the signal-to-noise
raMio ater than or equal to
20dE at the range
«PropertySasedRequinement»
System Cost

ID=2

ssatisfy

The production system cost shall be $10
million at sell.

e+ Satisfy Relationships are set
up in Rhapsody
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Step 2: Connecting Descriptive and Analytical NORTHAOP CRUMMAN

Models ~
Requirements Descriptive » Establish connections between
Models attributes and Analytical
Models in a Parametric
System Parametric Diagram

Architecture Diagram

— Input performance parameters
(attributes) connect to C++, Java,

Attributes MATLAB, and etc. type models

« A tiribartes «ConstraintProperty =
MofN_M:double= RadarHodel _RadarModel
Model_RadarModel_MofN_M:double odel |

w A ttributes :l
frequency:double=1 Model_RadarModel_iFreq:double =

P —— Model|_RadarModel iCircleVehide:double ?
circleVehicle:double=1 - |

Model RadarModel_mtiClutterModel:double "

— . . Analytical

mtiClutterModel:doub |
Model oce |




Moving Between Descriptive and Analytical NORTHAOP CRUMMAN
House -
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Step 3 & 4: Establish Connection Layer NORTHROP CRUMMAN

ModelCenter® “Connection Layer”
®

“Analytical Models”

Rhapsody® “Descriptive Model” : = A
. i - T ﬁ i Radar \§
— / MATLAB
= Antenre_panei : : ’ ’ SIMULINK

liibeidigeiere) 853

aaaaaaaaa

®

* Phoenix Integration’s MBSEPak® will establish physical connections
between Descriptive and Analytical Models

« After analysis is performed, ModelCenter® will flow data back to
Descriptive Model
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Update
Descriptive
Models
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Perform Trade

Studies

Integrated Model Framework:
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4 Phoenix Integration MBSE Analyzer

Analyzer Edit View Tools Help
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Cost and Performance Scaling of Varying Size NORTHROP GRUMMAN
Radar Options

» This simple experiment confirms logical expectation: . g}*ﬂ%ﬁh )
— Bigger Radar yields Higher Probability of Detect at a Higher Cost ;"::-‘-::-;-5 ] e =
» Detailed analysis enables discussion of: *'* R
— Can we achieve target performance within specific platform o7 ' '
limitations? AR
— What performance requirements drive solution cost and size? 2 L
— How much is more performance worth?

« Able to evaluate more experiments along more
dimensions using models integrated through
ModelCenter® than ever possible manually

raschani'e kg hi

_ Velocity Design
Variables

1) Altitude
‘ 2) Radar Size
3) Velocity
4) Target Position

Altitude

adarWeighl

Color : Cost
- Red Higher Cost
- Blue Lower Cost

Target Position




Investigating Designs: NORTHROP GRUMMAN

a Data Visualizer
"o B ‘ I ‘ Category | Design 250 [Design 16|Design 424
|
|
|
8

Rank é 1 2 10
—

Variables

. Size X y z
position X y z
Iswath X y z

: . radarCost  [x ly |z |
| | Highest ranked trade adarwemhilx T |
! . . PwrCone v L, I
| based on objectives PusCone —
and constraints SNR x y d
.CNR X \% z
g i i i
i L] 1 Objectives
x_1
maximize:
100% X y z
» Utilize requirements to drive analysis
radarCost
. . . minimize:
. Mod(_aICenter® will help identify best 100% . y ,
solutions: PD
maximize:
— Identify solutions that do not satisfy 100% x y z
performance requirements SNR
— Identify the top solutions that optimize TSJ;T'Ze' x v Z
solution characteristics
- Ident_ify common characteristics of good Constraits Margn. [Margin. [Margin:
solutions position 72.48%  |60.35% |25.64%
Margin: Margin: |Margin:
»  Outputs number of cases that meet o 1o ooy 15 ve |15 ous
the driving requirement and ranks Margin:  |Margin: |Margin:
. . . . radarCost 6.85% 12.25% |18.19%
them in terms of selected criteria, in RETRIT Margin: | Margin:
this case cost SNR 0.2% 1.8%  |4.89%
Margin: Margin: |Margin:
CNR 11.68%  |10.12% [2.53%




Trade Space Optimization to Investigate NORTHROP GRUMMAN
Optimal Designs

I

S s i

ModelCenter® tries to leverage certain design
variables by getting as close as possible to the
constraints

ModelCenter® suggests a best design (run 40 out
of 86)

Goal: Minimize Radar Cost
Constraints are based on requirements

I =
| Problem Defrtion | Best Design | Convergence Hateey | Rasuts | Detads | Messages
i

Best DEEIQI'I
/ Run Number 40

Hame Valae

radarCost X
Hame Walee

radarie X

POISE y

d Z
Pt Xy
Hama Slart Value Valug

velocity X

y

VA

altitude
radarSize

Varying 3 design
variables

Running the Optimizer provides feedback about the models and flexibility of designs based

on requirements




Higher Fidelity Cost Model Added: SEER-H

NORTHROP GRUMMAN

Integration -
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Color : Development Cost
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* Higher Fidelity Cost
Model allows us to look
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beyond the material cost
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Mission/Engagement Simulation Validation: NoORTHROP GRUMMAN

i) [=]f
File Edd Tools Mode Help

Ba @@ 2 e X @ Library Editor | Sconario Bulder  Fxocution - Past.Processing

Engineering Models can be
used to verify engagement
or mission objectives

Campaign

MISSION

| Anitude 7,122 km

H P I 000

ENGAGEMENT

Altitude ENGINEERING/Tools

Validate system level parameters in an
Engagement/Mission by increasing the scope




Integrate ERACE with Engineering Models NORTHROP CRUEAN.

ModelCenter® e
executes ERACE

nnnnnnnnnnnnn
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| Feed Output values
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Analytical Back to Descriptive:
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Step 6: Update Descriptive Model with New

Design Variable Values

24

» Design parameters (attributes) have changed due to trade studies

performed

— Rhapsody “Descriptive Model” is updated with new attribute values

— New parameters show where current architecture fits with performance

requirements

4§ Phoenix Integration MBSE Analyzer P [E=TE =)
Analyzer Edit View Tools Help
Welcome | Review Manage Constraint Blocks | Manage Parametric Diagrams | Evaluate Designs m— =
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ucture 9 ir Requirements Bockmark | <none> I~
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~[e wheel.brake.padife > 72,000m o 72,000mi Brake pads chall have a projected life of atleast 72,000... The total pewer consumption shall be no more than 43kW.
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o, “1 | TestCase 1
ents Mame: Property Bounds Akl == HpanelPCU 0000
* oR =13 o » 15.000 X
[Z157 _2 Vehice Properties Demidbalion |, 30000 15.... off
[¥153 _3 Pad Dimensions swath Pricesscr st L, 3000 80.... o
[ o cevmmotin
ProbabtyOfetecion  ProbDet =
=a =0 I, > 20.000 X
R e 1, > 21000 x
System Cost radarCost fu < L0008 407 o
System VWieigh radar il 2,400.0 o
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Getting Ever Closer to the End-to-End Model

* Linked requirements and architecture
(descriptive modeling), with engineering
and engagement/mission models (analytical

pabilit
h

modeling) st

* Generated vast quantities of trade studies
to perform cost vs performance analysis

e Reduced manual communication between
teams

« Paved the way for validating engineering
design decisions with respect to the
customer’s mission

NORTHROP GRUMMAN
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THE VALUE OF PERFORMANCE.

NORTHROP GRUMMAN
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Abstract
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As systems become more complex, turning the many knobs on design choices
becomes a complex n-dimensional problem. Not only is this difficult from an analysis
point of view but it is further inhibited by the amount of communication needed
between different system designers. Because of this, it is easy to optimize a portion
of the system at first, say an antenna, but later find that the rest of the system
components (power, physical structure, and software design) are now all constrained.
Flexibility in both design and cost are now lost and the ability to change designs in
the future are timely and expensive. Alleviating the stove piping effect of designing
complex individual components for large systems throughout concept development is
a must.

An integrated model framework was implemented for an internal customer,
generating large amounts of trade studies by connecting architectural models with
integrated software, antenna, power, and cost models for a radar design. What came
out of this implementation was the ability to cut down on the labor and time required
to combine data from independent models from many disciplines. This opened up the
possibilities of turning new and more knobs of designs that would not have been
considered due to the stove piping of information.

NORTHROFP GRUMMAN
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