SPECIAL OPERATIONS FORCES INDUSTRY CONFERENCE

TALOS Computing Architecture and Software Development Kit Introduction

> TACTICAL ASSAULT LIGHT OPERATOR SUIT

> > OS.

TACTICAL ASSAULT LIGHT OPERATOR SUIT

UNCLASSIFIED

UNCLASSIFIED

PERSPECTIVE AND PHILOSOPHY

Leverage all existing solutions possible to achieve Milestone B "Prototype" Minimize technical risk

Keep it simple, the minimally sufficient solution is best

Invent nothing that is not required to achieve technical intent

ARCHITECTURAL DRIVERS

- Survivability (availability, redundancy, failover, and reliability)
- Interoperability
- Adaptability/Modifiability
- Extensibility/Scalability
- Modularity (at odds with integrated design and Size, Weight, and Power (SWAP) constraints)
- Security

DESIGN PHILOSOPHY

• Open																			
Process at the edges																			
Data reduction																			
Common services																			
Priorities																			
Mission Modes																			
Diagnostics							ģ												
Hardware Security Module (HSM) support																			

TERMINOLOGY

- Node physical component in one location on the suit
- Sensor node small, embedded, interchangeable sensor package connected to suit network, no/minimal Operating System (OS)
- Sensor gateway sensor data aggregator to support common messaging
- Compute node multiple Central Processing Units (CPUs) and OS's (current plan is 2, primary and backup)
- Service common computing capability shared by multiple applications/services
- Sensor service common computing service to sample, digitize, and publish sensor data on suit network
- Processing service software capability running on compute node(s), optionally driven by a rules engine, managing information delivery and display
- High availability mechanisms to ensure fail over, load balancing, and priority/quota enforcement, relative to current mission mode

HARDWARE DIRECTION

- Overall goal: baseline final hardware as late as possible
- Heterogeneous (x86 and Advanced RISC Machines) processors
- Must run Android Apps (may be ported to minimal Linux OS)
- 2 compute nodes primary and backup
- 4-8 multicore CPU's per node
 - Modular, replace processing card with storage
 - Additional backup "go bag" for data logging and comms
- Small form factor PC and high core graphics processing units are current targets
- Virtualized environment, can support limited dedicated OS if required
- GigE or 10GigE switched, *wired* network
 - Potentially open to integration of wireless components also
- Designing to support significant video processing

SENSOR NODES

- Generic model for sensor integration
- Multiple detector elements per physical sensor node possible
- Micro controller with embedded OS
- Pub/sub architecture using common message system
- Plug and play registration of sensor nodes

VIRTUALIZATION

Evaluating three approaches

- 1. Non-virtualized Single OS per CPU
 - Lowest complexity
 - Requires custom high availability (HA) solution
 - Could introduce security and stability challenges
- 2. Traditional VMs (heavyweight)
 - Additional complexity
 - Data center HA solutions directly apply
 - "Sandboxing" increases security and stability
 - VM size still big
- 3. Modular OS
 - Same benefits as option 2, but also...
 - Purpose built, highly optimized VM
 - Much smaller size, increased performance, efficiency, and HA support

Goal: All common services in Modular OS

Final solution may be a mix of all 3

VIRTUALIZATION APPROACHES

MESSAGING, INTERFACES, AND API

- Common messaging library key to service interaction and interoperability
 - Protocol buffers over nanomsg
 - Provided via lib_talos and the SDK
 - .proto files and nanomsg interaction semantics define the ICD
 - Example (log message):

```
package talos.net;
message LogStatement {
    required string sender = 1;
    required int32 logLevel = 2;
    required int64 time = 3;
    required string data = 4;
}
```

- lib_talos provides
 - nanomsg semantics and socket set up abstraction
 - System logging abstraction
 - Service registration/authentication/discovery abstraction
 - Command channel establishment and abstraction
 - Implemented in C with minimal dependencies
 - C++ and Java libraries/bindings in development
 - Other languages expected, implemented as required

CODE MANAGEMENT

- Open source libraries forked at <u>https://github.com/SEI-AMS</u>
 - <u>https://github.com/SEI-AMS/nanomsg</u>
 - https://github.com/SEI-AMS/protobuf
 - https://github.com/SEI-AMS/protobuf-c
 - <u>https://github.com/SEI-AMS/osv</u>
 - <u>https://github.com/SEI-AMS/cppnanomsg</u>
- Build environment
 - Cmake
 - Linux
 - Compatible C/C++ Environment

APPLICATIONS

Example application types:

- System health and status reporting
- Operator health and status reporting
- Team health and status reporting
- Communications system control and interaction
- Moving map services
- Threat identification, tagging, and tracking
- Blue/grey force situational awareness monitoring
- Targeting
- Sensor management
- Terrain analysis
- 3D visual fusion (e.g. terrain overlay, route visualization)
- Intelligence gathering (e.g. audio, video, images, sensor sampling)

Evaluation of existing GOTS apps, gaps, overlaps, etc. during 2015 RPE FY16 – Heavy focus on application porting and development

CONFIGURATION CONTROL AND CONTRIBUTING

UNCLASSIFIED

- External developers expected and welcome
- Establishing collaboration portal (access restricted and authenticated)
 - Git repository
 - Build server
 - Collaboration wiki
 - Documentation repository
- Need to identify and standardize external system interfaces
- Heavy emphasis on standardized
 - Interface definitions
 - Message formats
 - Interaction mechanisms
 - Application priority, criticality, and quota enforcement
 - As applicable to differing mission modes

LOOKING AHEAD

- SOFIC initial availability of SDK and lib_talos
- 2015 RPE focus on:
 - Existing app survey
 - Service development
 - Mapping engine
 - Display alternatives
 - High Availability (HA) and load experimentation
 - Operator interface (HCI) collaboration
- Remainder of FY15
 - Initial implementation of all core services
 - Initial identification of all required applications
 - Full establishment of development collaboration capability and test labs
- FY16 year of the application
 - Continued refinement of supporting services, infrastructure, and HA
- FY17 year of integration and testing
 - Application refinement, integration, and initial field trials

THANK YOU

Questions and Comments...