

A Green Approach to Convert Energetics to Biofuels

Global Demilitarization Symposium and Exhibition December 7 - 9, 2015

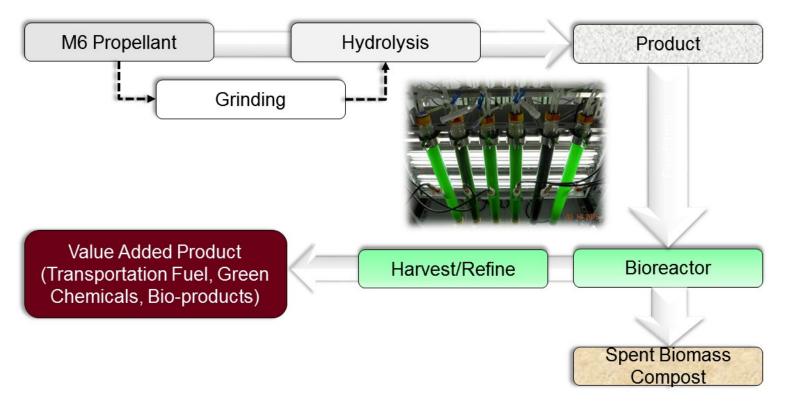
Presented by: Ms. Karen Shaw , Leidos

Unclassified Distribution A Approved for public release: distribution unlimited.

Authors

- Dr. Pamela Sheehan, RDECOM-ARDEC
- Dr. William Porubusky, Algenol LLC
- Dr. Eugene Rozumov, RDECOM-ARDEC
- Ms. Peggy Sanchez, RDECOM-ARDEC
- Ms. Karen Shaw, Leidos
- Dr. Shauna Dorsey, UTRS
- Dr. Soledad Fuentes, Algenol, LLC

- Many explosives and energetics are demilitarized through OB/OD
- This is a relatively slow but inexpensive process however,
- OB/OD produces large amounts of CO₂
 - CO₂ contributes to climate change
- The research objective is to develop a cost competitive, technical alternative to OB/OD that can be used to demilitarize a wide variety of energetics and explosives without the production of greenhouse gases.
 Executive Order 13693, Planning for Federal


Unclassified Distribution A Approved for public release: distribution unlimited. ©2013 LEIDOS. ALL RIGHTS RESERVED.

leidos

- ✓ Resource recovery,
- ✓ Resource reuse in carbon neutral process
- ✓ Produce value added product
- ✓ Develop business case analysis

DODIC D533

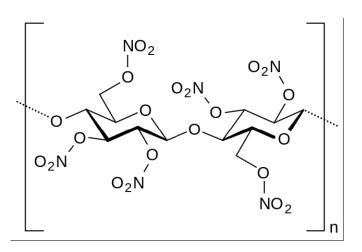
M119A2 155-mm Propelling Charge, red bag propelling charge used in the M185 and M199 155-mm howitzers.

- One of the top 10 most abundant items in the Demil Stockpile
- 87% nitrocellulose
- Current disposal method is by OB/OD

Sustainable Demilitarization

Net weight of M6 in stockpile = 4,350 s-tons (8,700,000 lbs)

Metrics: lower unit cost, improved throughput, reduced green house gas emission.


Unclassified Distribution A Approved for public release: distribution unlimited. ©2013 LEIDOS. ALL RIGHTS RESERVED.

Hydrolysis process for recovery of nitrogen from M6 pellets

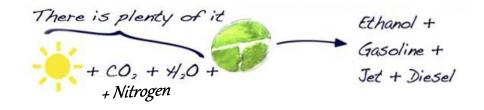
- Not a new concept
 - data exists for hydrolysis of M6 fines
- New process for M6 pellet

 Goal is to recover optimal concentrations of nitrite and nitrate from nitrocellulose

Mechanism is assumed to be The direct substitution of nitro groups by hydroxide

Hydrolysis screening study results

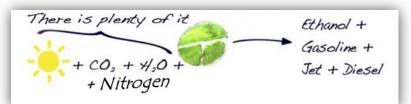
- NaOH dissolves pellet and liberates nitrite and nitrate NO GRINDING NECESSARY
- ✓ Ratio of M6:NaOH (wt %) is key
- Recovered ratio of nitrite to nitrate is less than observed for NC fines
- Demonstrated high nitrogen yield
- Tests run at high temperatures
- Reaction time < 28 hrs</p>


Hydrolysis DOE Study Plan

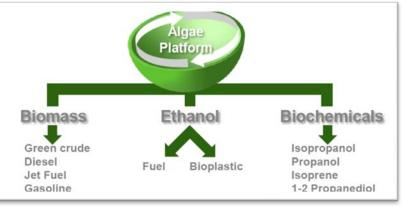
- Short-Term Goal Statistical model based on JMP to maximize nitrogen recovery
 - Response- nitrogen yield
 - Factors-
 - M6 concentration (wt % reactor volume)
 - NaOH concentration (wt % reactor volume)
 - Temperature
- Long-Term Goal Testing Template for other propellants and explosives

Basic Principle

Recovered Nitrate and Nitrite from M6 hydrolysis

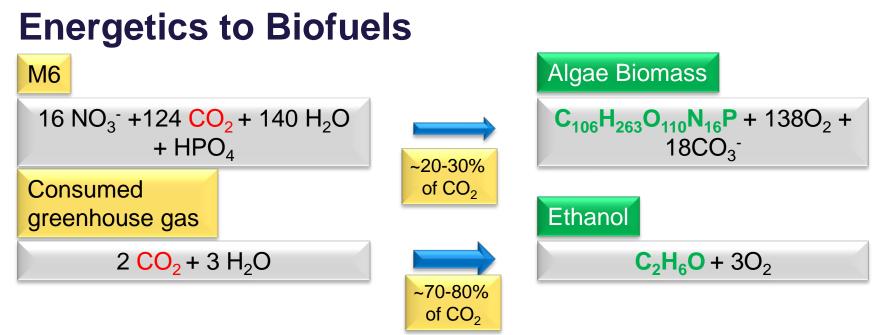


Bench Scale Reactors



Algenol

- Neutralized M6 Hydrolysate is fed to Algenol cyanobacteria being grown in Algenol photobioreactors
- Carbon Dioxide is consumed during this process
- Algenol cyanobacteria consume the nitrogen from the neutralized M6 Hydrolysate to produce Biomass and support the production of Ethanol
- When produced at a greater quantity, the Ethanol is removed and concentrated
- The Biomass is dewatered and processed through a hydrothermal liquefaction (HTL) unit to produce green crude oil


Algenol screening study results

- Proprietary cyanobacteria strains screened for growth on combined nitrite and nitrate from M6 hydrolysis
 - ✓ No toxic effects observed
 - ✓ Strain growth equal to or greater than growth on nitrate alone
 - Ethanol production about 20% lower than by strains growing on nitrate alone

Stoichiometry

1 tonne CO₂ consumed produces 144 gal of fuel ~90% direct to ethanol, 10% green crude oil from biomass

37.4 lb N is needed per s-ton CO_2 consumed

0.26 lb N is needed to produce 1 gal of fuel

Path Forward

- M6 Propellant Hydrolysis/Neutralization process will continue to be refined, optimized and scaled-up to support the Algenol process scale-up
- Optimize induction of ethanol pathway in selected strain for improved ethanol production
- Substitution of M6 derived nitrogen in the Algenol process will be scaled-up from Lab Scale reactors to Field Scale reactors - outdoor cultivation in commercial photobioreactors (150 to 300L scale) and production of primary product – Ethanol
- When sufficient cyanobacterial biomass is produced, process the biomass into green crude oil and confirm quality

Contact Information

Dr. Paritosh Dave Leidos paritosh.r.dave@leidos.com

Ms. Karen Shaw Leidos karen.o.shaw@leidos.com

Dr. Pamela Sheehan RDECOM-ARDEC Picatinny Arsenal

pamela.l.sheehan.civ@mail.mil

