

Office of the Secretary of Defense National Aeronautics and Space Administration

Long Term Data Retention of Flash Cells Used in Critical Applications

Keith Bergevin (DMEA) Rich Katz (NASA) David Flowers (DMEA)

July 8, 2015

richard.b.katz@nasa.gov keith.bergevin@dmea.osd.mil david.flowers@dmea.osd.mil

Collaborative NASA / DMEA Flash Memory Analysis

- NASA
 - NASA designs and develops systems for missions subjected to extremely rugged environments and very long operational time frames.
 - An extraordinarily premium is on reliability, as electronic components are used in mission-critical and safety-critical applications. Failures can result in loss of many years of engineering effort, unique scientific data, expensive spacecraft, and life.
 - NASA has been and is a leader in maintaining the expertise and equipment for testing and evaluating electronic devices.
- DMEA
 - Operates the only Department of Defense integrated circuit foundry
 - Designs, tests, and fabricates integrated circuits to meet stringent military specifications
 - DMEA is the leading DoD organization for understanding integrated circuit fabrication techniques
- NASA / DMEA
 - This collaboration applies the respective advancements and expertise of each organization to perform an analysis of Flash memory devices that are key components for space and defense
 - The end result is an in-depth study of flash memory devices and their suitability in high reliability and / safety critical applications

Electrons can tunnel at low bias if Traps line up at a spacing of 3 nm or less

Chart courtesy of Microsemi Corp.

Hybrid Flash Test Techniques: Microscopy

SEM Image:10 µm Probe Pads FIB Isolated Flash Bit-Cell TEM Sample (Red) welded to Microprobe Sample is 20 nm thick.

SEM: Scanning Electron Microscope TEM: Transmission Electron Microscope FIB: Focused Ion Beam

• Microsemi methods of reducing SILC:

- Microsemi thickens the Tunnel Oxide to 10.3 nm versus 8.5 nm of typical memories to minimize the probability of enough traps lining up to cause leakage.
- Ramp rates and voltages are limited to minimize stress at the expense of write time.
- Write Cycles are limited to 500 rather than the 10,000 for memories.
- Cell is designed to eliminate high stress locations so electrons are passed uniformly across the Tunnel Oxide.
- Manufacturing tests use both checkerboard and checkerboard bar patterns in bake retention tests to eliminate weak tunnel oxides prior to shipment.
- A secondary objective of the NASA/DMEA test effort is validation of the effectiveness of manufacturer's mitigation techniques
 - Data retention lifetimes of Flash devices utilized in critical applications must be verified
 - NASA/DoD should not rely solely on manufacturer's claims independent validation is crucial!

*courtesy of Microsemi Corp.

Test Station for A3P250L FPGA

A3P250L FPGA Average Erased V_{TH}

Erased Cell Data Retention at 150 °C Performance vs. Specification

	Spec	6,000 Hour Data	S/N	Rate (mV/Year)	# Years	Delta (V)
Гј (°С)	Life (years)	Life (years)	CK002	51.7	2.2	0.114
70	102.7	306.8	CK003	62.5	2.2	0.138
85	43.8	131.1	RK002	79.2	2.2	0.174
100	20.0	60.0	RK003	56.6	2.2	0.125
105	15.6	46.9	CT 1000			0.011
110	12.3	36.9	CK002		6.6	0.341
115	9.7	29.2	CK003		6.6	0.413
120	7.7	23.2	RK002		0.0	0.525
125	6.2	18.6	KK003		0.0	0.374
130	5.0	15.0				
135	4.0	12.1				
140	3.3	9.8				
145	2.7	8.0				
150	2.2	6.6				

Specification Data From RT ProASIC Data Sheet, Revision 5, September 2012. 6,000 Hour Data derived predictions courtesy of Microsemi Corporation.

A3P250L FPGAs: Average Erased $V_{\rm TH}$ Distribution 242 Devices: Environmental Stressed and 4 Years of Storage

HAST: Highly Accelerated Stress Test

- Main focus Find and characterize the "weak" bit-cells!
 - Process variation creates array of bit-cells with variable "robustness"
 - Cells can be characterized as strong, nominal or weak
 - Weak cells define the actual data retention lifetime of the entire Flash array
- Hybrid testing: A multifaceted approach to characterize data retention
 - Microscopy and physical de-processing
 - Electrical characterization
 - Modeling and Simulation

Atomic Force Intensity Map of Flash Bit Cell Array

- Advantages of the Hybrid Approach:
 - Tied directly to the physical bit cells-not a statistical construct!
 - Accounts for physical phenomena that cannot be reliably measured (SILC, tunneling currents)
 - Rapid results: Not dependent on years of lifetime testing
 - Once trends from stress test data are identified and characterized; move to virtual environment
 - Simulations can be used to quickly create statistical database
 - Approach has been validated on several high- profile DoD weapons applications

Hybrid Flash Test Techniques: Modeling and Simulation

- Why use simulation methods?
 - Can generate a large amount of virtual statistical data in a very short time
 - 10 year data retention lifetime can be accurately simulated in less than 24 hours!
 - Allows much more visibility into degradation mechanisms
 - Cannot easily measure quantities such as tunneling currents, SILC or trap distributions

- Types of simulations used by DMEA:
 - First-Principle physics using advanced numerical techniques to solve relevant partial differential equations that govern the phenomena-of-interest
 - Proprietary models allow the inclusion of many different physical phenomena
 - Impact ionization, Fowler-Nordheim tunneling, quantum effectsmany others.
 - Far more detail than typical engineering SPICE simulations
 - Multi-scale: simulations performed at carrier and device level
 - Data from simulations form the basis of predictive model

Flash Data Retention Tests: Accelerated Lifetime

- Accelerated lifetime tests:
 - Apply temperatures (or voltages) to stress to device
 - Record time-to-failure and/or parametric shifts (e.g., change in threshold voltage, V_{TH})
 - Extrapolate stressed lifetime back to operational environment using Arrhenius Equation
 - Favored by manufacturers due to ease of implementation
- Problems with accelerated lifetime testing:
 - Assumes types of defects activated are independent of temperature- not really the case!
 - Lacks resolution to account for some true retention degradation mechanisms
 - Stress-Induced Leakage Current (SILC)
 - Trap-Assisted-Tunneling (TAT)
 - Quantum tunneling
 - Program/Erase damage in dielectric thin film
 - Does not realistically address defect activation energy (E_A)
- How do manufacturers account for such issues?
 - Arrhenius-based retention calculations typically result in 100+ year lifetimes
 - Manufacturers typically specify minimum 10 year retention time; some manufacturers specify retention times as a function of temperature.
 - Use Order-of –Magnitude margin
 - Cell design, stressing, and screening to eliminate or minimize certain classes of defects.

Another Approach: Statistics, Black Boxes, and V_{CC} Margin¹

- Device Supply Voltage (V_{CC}) Margin Tests:
 - Decrease device's supply voltage far below specification until an addressed bit "flips"
 - Utilize statistical analysis
 - Note: Threshold voltage margin testing for Flash cells, as described by JEDEC, is a valid test and is completely distinct from the "V_{CC} Margin Test."
- Issues With Device Supply Voltage (V_{CC}) Margin Testing of Flash Memory:
 - No physical basis for such tests; result is purely a statistical construct
 - Rationale of methodology inconsistent with accepted Flash cell theory of operation and engineering principles.
 - Assumes that the read voltage applied to the gate of the Flash cell is similar to V_{CC}
 - Other then for first generation parts, this is frequently not true. Read voltage on later-generation parts developed by peripheral circuitry (charge pump, voltage boost).
 - Method does not utilize any "design for test" capability in the device.
 - Method can only attempt to test one of the two logic states (for dual level cell)
 - Lowering V_{CC} cannot detect programmed bit cells (logic "0"); yet claim is that only logic "0"s are detected.
 - Results reported for charge loss are not credible.
 - Does not address the impact to Flash array peripheral circuitry
 - Voltage references, sense amplifiers, decoder logic, error correction all impacted by lower supply voltage
 - Results severely compromised due to peripheral circuitry not having infinite PSRR.
 - V_{CC} margin testing is typically utilized as a gross methodology to evaluate processing quality
 - Much too coarse for utilization in data retention lifetime determination
 - Can be used to detect gross defects at the device or system level; not useful at the Flash cell level.
 - Is being misapplied for data retention time testing and characterization.

¹See "JFTP Fuze – F-PLD Project, Understanding and Characterizing F-PLD Failure Modes in Fuzes," 57th Annual NDIA Fuze Conference, July 2014.

Conclusion

Additional Material

Flash Attributes

- Flash Memory is:
 - High density
 - Low Cost
 - Non Volatile
 - Electrically Updateable
 - Read/Write by block, word, page
 - Block erasable- Data Reset to logical "1"
 - Pervasive!

NOR Flash Cell Cross-section

- Used in a wide variety of commercial and military applications

• Flash Bit-Cell Operation:

- NMOS transistor modified to include insulated "floating gate" below top (select) gate
- Data is stored in the form of electrons on the polysilicon floating gate
- Stored charge modulates threshold voltage (V_{TH}): Voltage at which conduction occurs
- Programmed State: ("0") high V_{TH}
- Erased State: ("1") low V_{TH}
- The Problem:
 - Floating gate charge data storage is an extremely fragile data retention mechanism
 - Easily upset by extrinsic environmental factors (elevated temp, radiation, high E-fields)
 - What is the true reliability (data retention lifetime) of a device with Flash bit-cells?

Hybrid Flash Test Techniques: Microscopy

- Scanning Electron Microscopy (SEM)
 - Useful for geometric characterization of bit-cells
 - Generated data used to build geometrically accurate virtual bit-cell (modeling)
 - Electron Dispersive X-Ray mode (EDX)-Used to characterize materials
 - SEM images used to characterize peripheral circuitry (reverse engineering)
- Focused Ion Beam (FIB)
 - Used to create cross-sectional views of individual bit cells for SEM analysis
 - Used to perform circuit edits for electrical characterization (bit-cell isolation)
- Transmission Electron Microscopy (TEM)
 - Used to characterize very small features such as dielectric film thickness
 - Sub-nm resolution is achievable with this technique
 - Electron Energy Loss Spectroscopy (EELs)- Chemical analysis of nm-scale samples
- Infrared Emission Microscopy (IREM)
 - Used to detect photon emission caused by current flow
 - Useful for mapping virtual memory location to physical location in Flash array

Hybrid Flash Test Techniques: Temperature Stress Testing (1)

- Identify virtual location of weak bit-cells
 - Program Flash array with predesignated bit-cell values
 - Expose parts to elevated temperature to activate defects
 - Periodically measure threshold voltage (V_{TH}) of bit-cells (both programed and erased)
 - Resultant data will be histogram illustrating statistical "spread" of V_{TH} values
 - "Outliers" can be identified from histograms-as can other trends indicative of weak cells
 - Once virtual address of weak bit cell is known, IREM used to map physical location

Hybrid Flash Test Techniques: Temperature Stress Testing (2)

- Statistical analysis of V_{TH} to monitor global array degradation
 - Above plot illustrates the effect of temperature stress note gradual change over time
 - Data such as this useful for characterizing the stress effect over millions of Flash cells
 - Gradual change indicates that applied stress is reasonable
 - Rapid change would indicate applied stress is too great
 - Becomes difficult to distinguish between applied stress and activated defects

A3P250L FPGA Average Programmed V_{TH} 6,048 Hours @ 150 °C, June 1, 2015

A3P250L FPGAs: Average Programmed V_{TH} Distribution 242 Devices: Environmental Stressed and 4 Years of Storage

Hybrid Flash Test Techniques: Electrical Characterization

- Isolate and Characterize bit-cells
 - Measure parameters such as threshold voltage
 - Validate programming/erase waveforms and algorithms
- Isolate and characterize peripheral circuitry
 - Array elements such as charge pumps, sense amplifiers Det Vit-24207098-3
 - Operation of these elements influences accuracy of data retention testing
- Electrical characterization data
 - Used to calibrate model-curve fit virtual data to electrical data
 - Calibration parameters include capacitance, current and voltage measurements
 - This data binds simulation models to physical device

Hybrid Flash Test Methodology: Summary

- The basic strategy:
 - Use temperature and voltage stress testing to identify trends such as global degradation and "weak" bit-cells (outliers)
 - These cells define the data retention time of the product
 - Testing over millions of bit-cells ensures that results are statistically relevant and "worst case" variation has been observed
 - Once weak cells are identified, utilize microscopy electrical characterization techniques to gather modeling/characterization data:
 - Microscopy yields geometric and material system data
 - Electrical characterization yields data on difficult-to –measure quantities: impurity concentrations, resistive implants
 - This data serves to bind the simulation algorithms to the physical device
 - After a calibrated simulation model has been developed, utilize simulation techniques to develop data retention lifetime database
 - Advantage-simulations can be completed much more rapidly than physical testing
 - Since model is calibrated to physical device data: very little loss in accuracy
 - Utilize simulation database to develop predictive model for data retention lifetime

Hybrid Flash Test Methodology: Advantages

- Advantages
 - Methodology is tied to the physical device- Results are <u>not</u> a statistical construct!
 - All simulations utilize models calibrated to physical data
 - Methodology is independent of redundancy, wear leveling, and error correction
 - These can mask the true bit-cell failure rate and lifetime estimates
 - Methodology is easily adaptable to a wide range of non-volatile memory architectures
 - Split-gate Flash, EEPROM, Antifuse
 - Does not take years to obtain results:
 - Elevated temperature testing can take many years, depending on selected stress