


# Nano second behavioral of Exploding Bridge Wire (EBW) using Ultra High Speed Imaging Technology

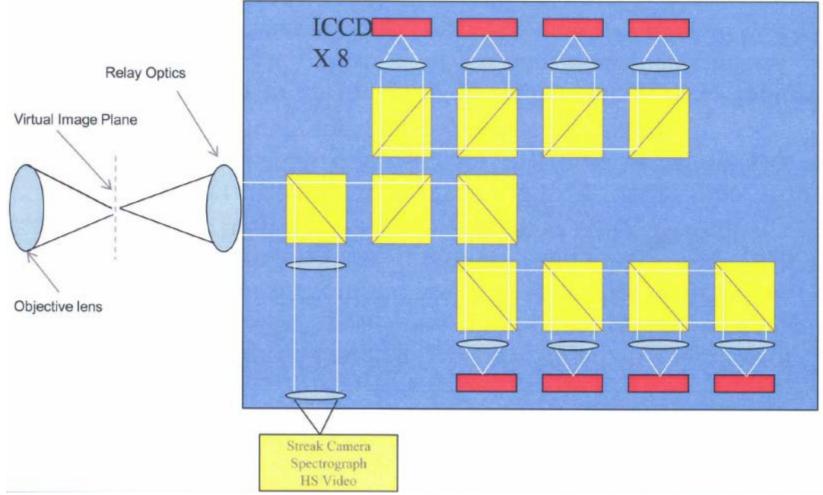


H. Muthurajan, Martin Yeo Kwee Liang, Low Chan Gee, Ang How Ghee

### Energetic Materials Research Centre Nanyang Technological University, Singapore

For 58th Annual Fuze Conference, Baltimore



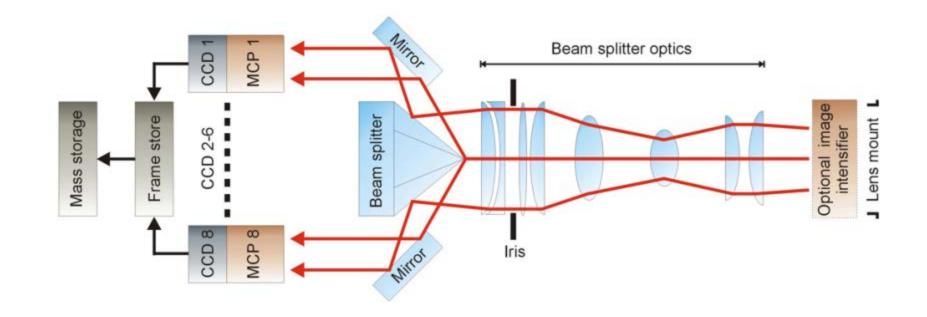

# **Overview of Presentation**

### 1. Introduction

- a) Framing Camera for detonics
- b) Streak Camera for detonics
- c) Simultaneous Streak and Framing Camera
- 2. Al based EBW
  - a) Ultra high speed framing
  - b) Streak Record
  - c) Digital Storage Oscilloscope Analysis
- 3. Result and Discussion
- 4. Conclusion



# High Speed Framing Camera Eight way beak splitter with additional optical port

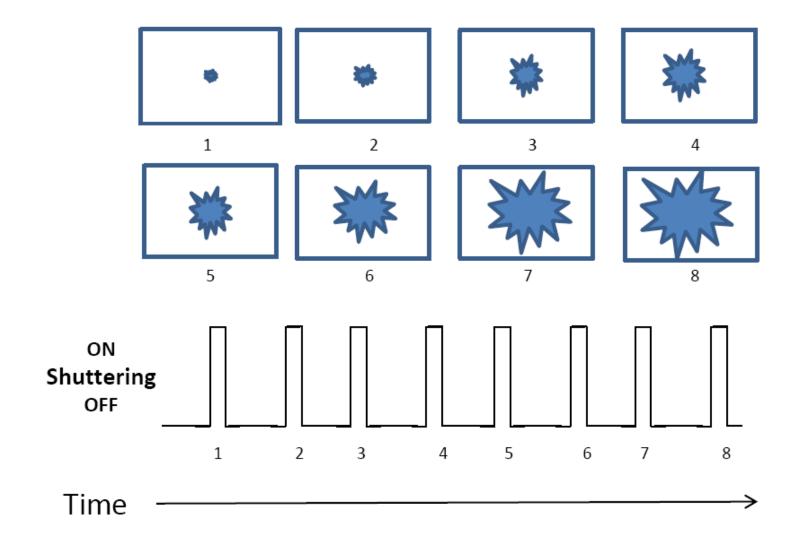



#### **Disadvantages**

Disadvantage of this technique is that **at each beam** splitter 50% light intensity is reduced (halve, i.e split in-to 50% and 50%) which is received by next subsequent beam splitter. Hence each ICCD receives different intensity of light

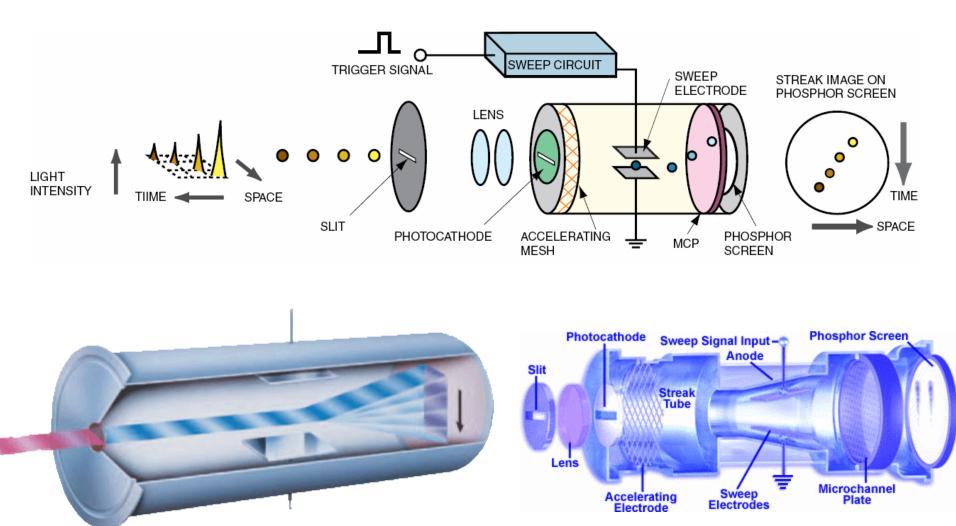


# Framing Camera : Pyramid beam splitter




Each camera consists of eight individual CCD detectors. The signal is collected by a common optical system and is then split into eight identical copies that are relayed to the individual CCD detectors. The camera also has the option of double exposure for the CCDs thus giving 16 images.

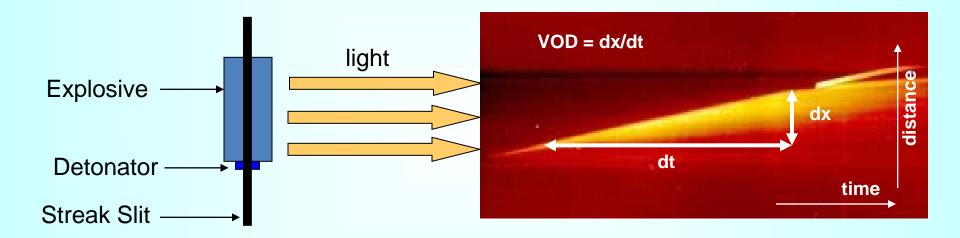
The **pyramid mirror** has eight plane facets reflecting eight images of the object on to the faces of **eight image intensifier devices** for respective image sensor devices. In each case the respective image is reflected via an intermediate mirror




# **Framing Sequence**






# **Operating Principle of Streak Camera for Detonics**



Streak Tube



- Use to derive velocity of detonation (VOD)
- Event parallel to slit, perpendicular to optical axis



Setup

**Typical streak image** 

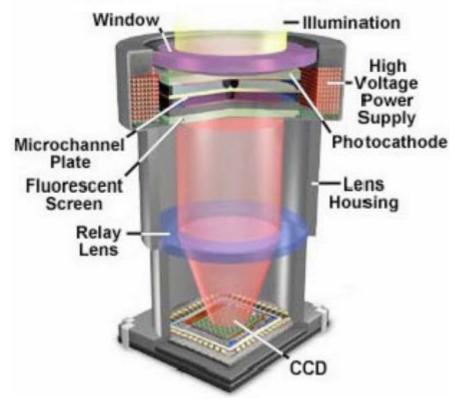
Slope = m = tan 
$$\theta = \frac{y_2 - y_1}{x_2 - x_1}$$
  $\theta$  = tan<sup>-1</sup> $\left(\frac{y_2 - y_1}{x_2 - x_1}\right)$   
 $VOD = \frac{d_x}{d_y} * \frac{SF}{WR}$   $C_J = \frac{1}{4}\rho D^2$ 



### Why nano seconds exposure for detonics?

#### **"Freezing" Image Motion**

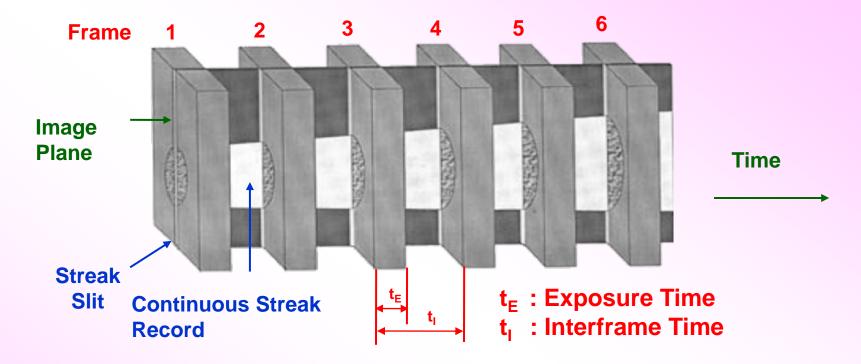



Image blur on the camera sensor.

Using a very short exposure time reduces blur.



# **ICCD (Intensified CCD) for Framing and Streak Camera**


#### Image Intensifier with Relay Lens



- Photocathode: Generation of photoelectrons
- Microchannel plate (MCP): Multiplication of electrons
- Phosphor Screen: Conversion of electrons back into highly increase (x10<sup>4</sup> - 10<sup>6</sup>) number of photons
- High numerical aperture lens-coupling for superior distortion free image quality
- CCD: Conversion of the very high number of photons to charge, readout and digitization



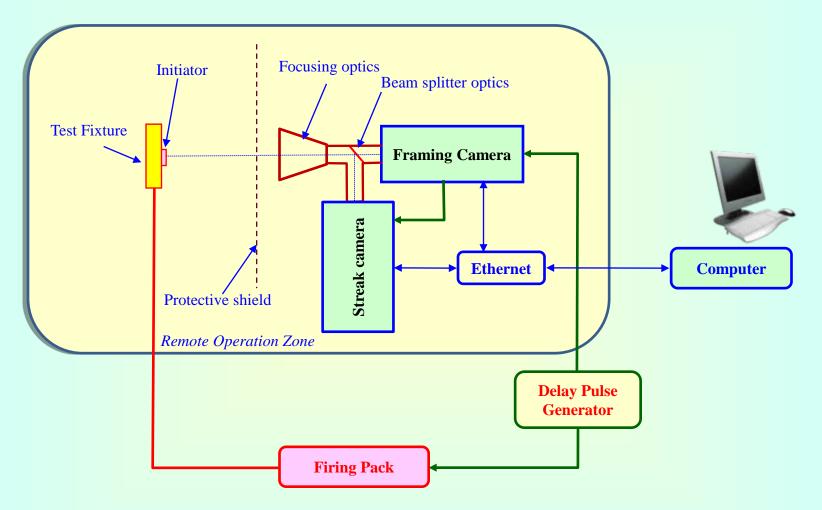
# **Simultaneous Streak-Framing Record**



Streak : Continuous imaging, difficult to interpret

Framing : "what you see is what you get", but only at certain time-intervals Simultaneous Streak and Framing

- Allows recording of entire phenomena (with streak) + easier interpretation (with framing)
- Prevent misinterpretation of images




# **Advantages of Simultaneous Streak and Framing Records**

| Parameter             | Frames        | Streak                     |
|-----------------------|---------------|----------------------------|
| Spatial picture       | +             | —                          |
| Space resolution      | _             | + (but only in<br>1 plane) |
| Time resolution       | -             | +                          |
| Full-time observation | _             | +                          |
| Interpretation        | $\rightarrow$ | $\leftarrow$               |
| Velocities            | $\rightarrow$ | $\leftarrow$               |

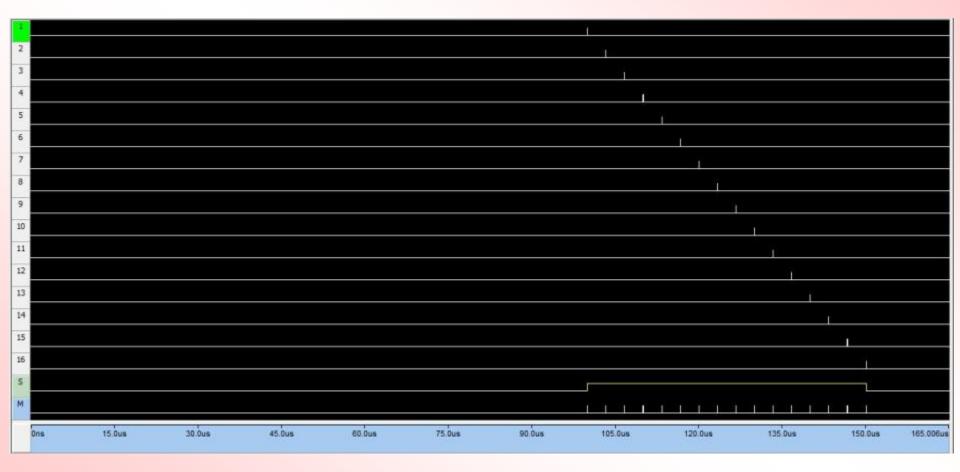


#### **Experimental setup of Simultaneous Streak and Framing Imaging**



Experimental setup of Simultaneous Streak and Framing Imaging for performance evaluation of AI based EBW

# Simultaneous Framing and Streak Imaging of AI - EBW


#### Parameters of Experiment – Synchronization CDU and Imaging System

| NTU - EnRI Software to Control Delay / Pulse Generator                          |                                                                                     |                                   |  |  |  |
|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------|--|--|--|
| ïle Trigger Delay Output Tools Help                                             |                                                                                     |                                   |  |  |  |
| È: E: E: E: E: C: ?                                                             |                                                                                     |                                   |  |  |  |
| Trigger                                                                         | Delay                                                                               |                                   |  |  |  |
| C Internal Rate 1000 Hz, t= 100 μs                                              | <b>A</b> = <b>T</b> • + 0 μs •                                                      | Read Delay                        |  |  |  |
| ○ External Level 1 V, Slope Rising ▼ HI Z ▼                                     | B = A • + 1 μs •                                                                    | Read Trigger                      |  |  |  |
| Single Shot <u>Execute     </u> ■ ARM Window     C     Line                     | C = Β • + 100 μs                                                                    |                                   |  |  |  |
| C <u>B</u> urst Rate 10000 Hz. t = 100 μs                                       | D = C • + 101                                                                       | <u>D</u> ownload to<br>Instrument |  |  |  |
| Pulses per burst 10 Periods per burst 20<br>Duration (Period) of a burst = 2 ms | A .□L B = 1 μs                                                                      |                                   |  |  |  |
| Output                                                                          | Info<br>Experimental Remarks                                                        |                                   |  |  |  |
| $T_0 = HIZ \cdot TTL \cdot Normal \cdot$                                        | 5mil Al based Exploding Bridge Wire<br>5kV CDU, 100 Joules                          | *                                 |  |  |  |
| A = HIZ · TTL · Normal ·                                                        |                                                                                     |                                   |  |  |  |
| $B = 50 \Omega \bullet TTL \bullet Normal \bullet$                              |                                                                                     |                                   |  |  |  |
| $C = 50 \Omega \cdot VAR \cdot Amplitude 4  V, Offset 0.50 V$                   |                                                                                     | ~                                 |  |  |  |
| $D = 50 \Omega \cdot TTL \cdot Normal \cdot$                                    | ☐ Instantaneous download of delay and text                                          |                                   |  |  |  |
| AB<br>-AB = 50 Ω • TTL •                                                        | LCD Display<br>LCD Text EnRI_Welcomes                                               |                                   |  |  |  |
| $CD_{-CD} = 50 \Omega \cdot TTL \cdot$                                          | C Static Display C Time C Date C Day<br>C Flash C Roll C Loop C Clear Text Timer 25 |                                   |  |  |  |
| Pop-up Error Messages                                                           |                                                                                     |                                   |  |  |  |
| EnRi                                                                            |                                                                                     | 2:17 PM                           |  |  |  |



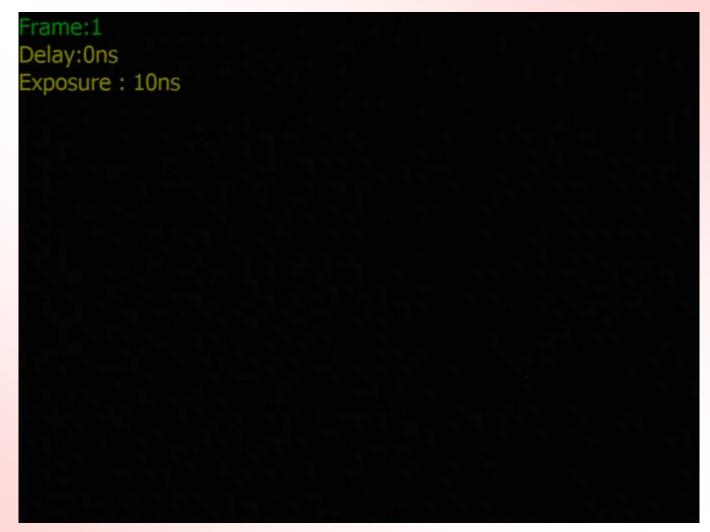
# **Simultaneous Framing and Streak Imaging of AI - EBW**

#### **Parameters of Experiment – Imaging Systems**



Exposure Time : **10 ns** Inter-frame Time: 3.323 µs Iris: f2.8 Gain: 1 Total Recording Length: 50.005 μs

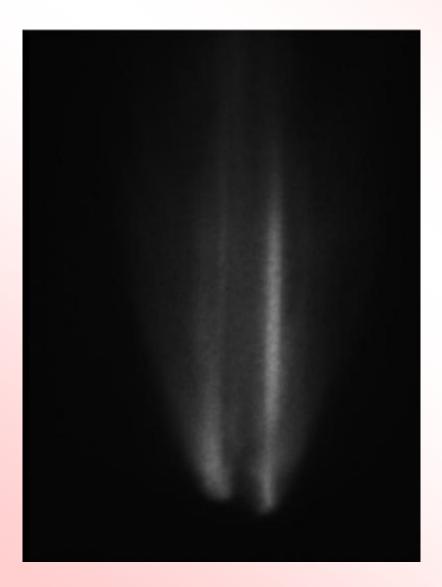
# Ultrahigh Speed Framing Imaging of AI - EBW


| Frame 1        | Frame 2         | Frame 3         | Frame 4      |
|----------------|-----------------|-----------------|--------------|
| T= 0 μs        | T= 3.333 μs     | T= 6.666 μs     | T= 9.999 μs  |
|                |                 | •               |              |
| <b>Frame 5</b> | Frame 6         | Frame 7         | Frame 8      |
| T= 13.332 μs   | T= 16.665 μs    | T= 19.998 μs    | T= 23.331 μs |
| Frame 9        | Frame 10        | Frame 11        | Frame 12     |
| T= 26.664 μs   | T= 29.997 μs    | T= 33.330 μs    | T= 36.663 μs |
| Frame 13       | <b>Frame 14</b> | <b>Frame 15</b> | Frame 16     |
| T= 39.996 μs   | T= 43.329 μs    | T= 46.662 μs    | T= 49.995 μs |

Observed Function Time : 6.666 μs Exposure Time : **10 ns** Inter-frame Time: 3.323 μs

Iris: f2.8 Gain: 1 Total Recording Length: 50.005 μs

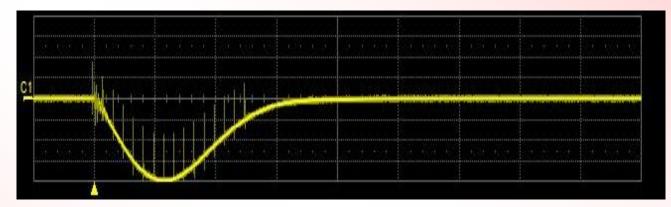



### Ultrahigh Speed Framing Imaging (Video) of AI - EBW



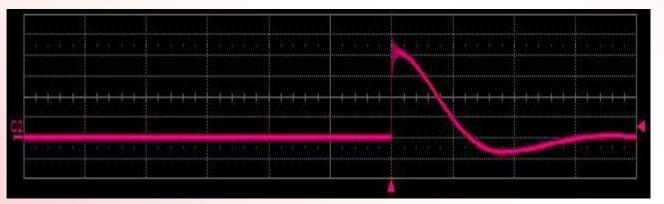
Observed Function Time : 6.666 µs Exposure Time : 10 ns Inter-frame Time: 3.323 µs Iris: f2.8 Gain: 1 Total Recording Length: 50.005 μs




# **Streak Imaging of AI - EBW**



Sweep Speed : 2.5  $\mu$ s/mm Sweep Duration : 50  $\mu$ s Slit Size : 50  $\mu$ m Gain : 608 Volt Iris : f2.8




### Digital Storage Oscilloscope (DSO) Data on AI EBW



Y axis : 1 Volt/div X axis : 20µs/div Offset : 0 mV

Pulses from Framing camera corresponding to the frames acquired



Y axis : 1.0 kV/div X axis : 20µs/div Offset : -2.0 kV

Voltage across the AI based EBW



#### Simultaneous Framing and Streak Imaging of AI - EBW

#### **Parameters of Experiment**

| 1  |            |        |        |        |        |        | 1       |         |         |         |         |
|----|------------|--------|--------|--------|--------|--------|---------|---------|---------|---------|---------|
| 2  |            |        |        |        |        |        |         |         |         |         |         |
| 3  |            |        |        |        |        |        |         |         |         |         |         |
| 4  |            |        |        |        |        |        |         |         |         |         |         |
| 5  |            |        |        |        |        |        |         |         |         |         |         |
| 6  |            |        |        |        |        |        |         | 8       |         |         |         |
| 7  |            |        |        |        |        |        |         |         |         |         |         |
| 8  |            |        |        |        |        |        |         |         |         |         |         |
| 9  |            |        |        |        |        |        |         |         |         |         |         |
| 10 |            |        |        |        |        |        |         |         | 1       |         |         |
| 11 |            |        |        |        |        |        |         |         | 31      |         |         |
| 12 |            |        |        |        |        |        |         |         |         |         |         |
| 13 |            |        |        |        |        |        |         |         | 1       |         |         |
| 14 |            |        |        |        |        |        |         |         |         | 1       |         |
| 15 |            |        |        |        |        |        |         |         |         | 1       |         |
| 16 |            |        |        |        |        |        |         |         |         |         |         |
| s  |            |        |        |        |        |        |         |         |         |         |         |
| м  |            |        |        |        |        |        |         | 1.1.1   |         |         |         |
|    | Ons 15.0us | 30.0us | 45.0us | 60.0us | 75.0us | 90.0us | 105.0us | 120.0us | 135.0us | 150.0us | 165.0us |
|    |            |        |        |        |        |        |         |         |         |         |         |

Observed Function Time : 6.656 μs Exposure Time : **5 ns** Inter-frame Time: 3.323 μs

Iris: f2.8 Gain: 1 Total Recording Length: 49.925 μs

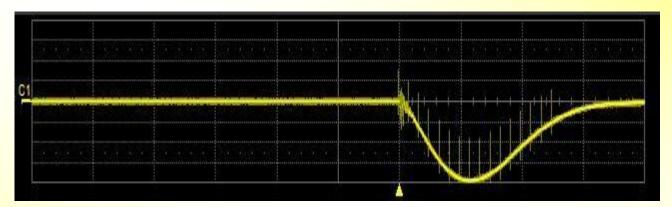


# **Ultrahigh Speed Framing Imaging of AI - EBW**

| Frame 1      | Frame 2         | Frame 3         | Frame 4        |
|--------------|-----------------|-----------------|----------------|
| T= 0 μs      | T= 3.328 μs     | T= 6.656 μs     | T= 9.984 μs    |
|              |                 | •               |                |
| Frame 5      | Frame 6         | Frame 7         | <b>Frame 8</b> |
| T= 13.312 μs | T= 16.640 μs    | T= 19.968 μs    | T= 23.296 μs   |
| Frame 9      | Frame 10        | <b>Frame 11</b> | Frame 12       |
| T= 26.624 μs | T= 29.952 μs    | T= 33.280 μs    | T= 36.608 μs   |
| Frame 13     | <b>Frame 14</b> | Frame 15        | Frame 16       |
| T= 39.936 μs | T= 43.264 μs    | T= 46.592 μs    | T= 49.920 μs   |

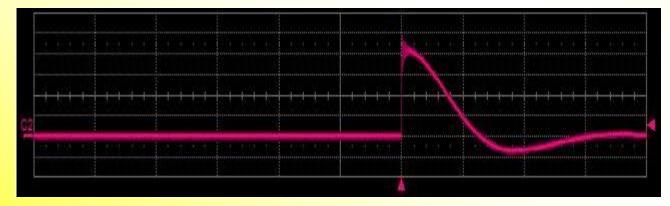
Observed Function Time : 6.656 μs Exposure Time : **5 ns** Inter-frame Time: 3.323 μs Iris: f2.8 Gain: 1 Total Recording Length: 49.925 μs




### Ultrahigh Speed Framing Imaging (video) of AI - EBW



Observed Function Time : 6.656 μs Exposure Time : **5 ns** Inter-frame Time: 3.323 μs Iris: f2.8 Gain: 1 Total Recording Length: 49.925 μs




### Digital Storage Oscilloscope (DSO) Data on AI EBW



Y axis : 1 Volt/div X axis : 20µs/div Offset : 0 mV

Pulses from Framing camera corresponding to the frames acquired



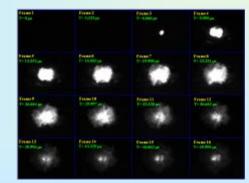
Y axis : 1.0 kV/div X axis : 20µs/div Offset : -2.0 kV

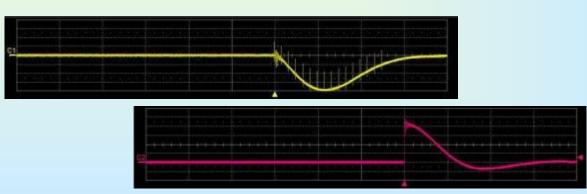
Voltage across the AI based EBW



#### CONCLUSION

a) Simultaneous streak and framing camera technique synergizes the advantages of the two methods and at the same time indicates whether the streak record had actually been taken in the expected or predetermined planes of observation.


In this manner, faulty analysis and wrong interpretation, which were frequent problems in the early days of streak recording, can be eliminated completely.


b) Due to simultaneous streak and ultra high speed framing camera we are able to evaluate the performance of Al based EBW

(1) The observed Function time AI - EBW is 6.66 µs for 5kV / 16µF CDU

(2) Ten or Five nano second exposure is sufficient for ICCD based ultra high speed framing camera to capture AI-EBW events

c) Demonstrated the repeatability of AI-EBW









# **THANK YOU**

from

Energetics Research Institute Nanyang Technological University Singapore



Name : Harries Muthurajan Phone : +65-6513 8172 Company: Energetics Research Institute Nanyang Technological University, Singapore - 639 798 Email: mharries@ntu.edu.sg Abstract Reference number: 13745