Characterizing Detonator Performance in Dynamic Witness Plates

Michael Murphy Mark Lieber

W-6 Detonator Technology Los Alamos National Laboratory

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Motivation

The Detonator Technology group in the Weapon Systems Engineering Division at Los Alamos National Laboratory is characterizing detonator performance by studying detonator-induced shock physics in transparent dynamic witness plates. Current work investigates detonators embedded in polymethylmethacrylate (PMMA) samples, and the shock wave image framing technique (SWIFT) directly visualizes and records explosively-driven shock maturation with high spatial and temporal resolution in PMMA.

Advanced and novel data-reduction procedures are required to accurately extract shock kinematics out of discrete measurements of shock position. The work presented here introduces a new methodology for quantifying centerline detonator shock strength from SWIFT data based on empirical Hugoniot characterization of PMMA.

Outline

- SWIFT
- Historic data-reduction methodology
- New ODE approach
- Example solutions
- Application to varidrive Hiper detonators
- Ongoing work
- Acknowledgments

Unclassified SWIFT employs spoiled-coherence laser backlighting coupled with schlieren optics and ultra-high-speed image recording

 "SWIFT and Explosive PIV", M. J. Murphy, Proceedings 15th International Detonation Symposium, Office of Naval Research, in press, 2015.

 "Preliminary investigations of HE performance characterization using SWIFT", M. J. Murphy and C.E. Johnson, Journal of Physics: Conference Series, Vol. 500, pp. 142024-1—142024-6, 2014.

• "Ultra-high-speed imaging for explosive-driven shocks in transparent media", M. J. Murphy and S.A. Clarke, Dynamic Behavior of Materials, Volume 1: *Conference Proceedings of the Society for* Experimental Mechanics Series, pp. 425–432, 2013.

 "Simultaneous photonic Doppler velocimetry and ultra-high speed imaging techniques to characterize the pressure output of detonators", M. J. Murphy and S.A. Clarke, AIP Conference Proceedings, Volume 1426, Vol. 500, pp. 402-405, 2011.

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

SWIFT images are rich with dynamic performance data useful for characterizing many detonator performance metrics

Detonator-driven shock waves are visible in PMMA due to the presence of large discontinuities in density at the shock fronts, as well as the curved shock geometries. **Detonator (into PMMA)** 5 ns exposures, 70 ns inter-framing

SWIFT images of detonator output provide either direct or indirect measurements of:

- Function time (indirect)
- Breakout symmetry (direct)
- Axial alignment of flow (direct)
- Output geometry evolution (direct)
- Output reproducibility (direct)
- Interface pressure (indirect)
- Shock pressure evolution (indirect)

SWIFT data has <u>discrete</u> temporal resolution that must be considered when designing an experiment to measure detonator performance.

Unclassified

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

LA-UR-15-24973

Historically, detonator SWIFT data in PMMA has been investigated along the flow centerline using power-law fitting techniques

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Derive a general ODE for shock position evolution in witness plate material by assuming a linear velocity Hugoniot for the material

 $p_s = \rho_0 U_s u$ Momentum conservation across 1-D shock wave $U_s = C_0 + su$ $u = \frac{1}{s} (U_s - C_0)$ $p_s = \frac{\rho_0}{s} (U_s)^2 + \frac{\rho_0 C_0}{s} U_s$ Empirical result for many materials over material-specific ranges in shock strength $U_s(t) \equiv \frac{\mathrm{d}y_s(t)}{\mathrm{d}t}$ Definition $p_s(t) = \frac{\rho_0}{s} \left(U_s(t) \right)^2 + \frac{\rho_0 C_0}{s} \left(U_s(t) \right) \quad \text{or} \quad p_s(t) = \frac{\rho_0}{s} \left(\frac{\mathrm{d}y_s(t)}{\mathrm{d}t} \right)^2 + \frac{\rho_0 C_0}{s} \left(\frac{\mathrm{d}y_s(t)}{\mathrm{d}t} \right)$ $p_s(t) = p_{pmma}(t)$ Material-specific shock attenuation model is required $\Rightarrow \frac{\rho_0}{s} (U_s(t))^2 + \frac{\rho_0 C_0}{s} (U_s(t)) - p_{pmma}(t) = 0 \quad \text{or} \quad \frac{\rho_0}{s} \left(\frac{\mathrm{d}y_s(t)}{\mathrm{d}t}\right)^2 + \frac{\rho_0 C_0}{s} \left(\frac{\mathrm{d}y_s(t)}{\mathrm{d}t}\right) - p_{pmma}(t) = 0$ $\begin{bmatrix} U_{s}(t) = \frac{1}{2} \begin{bmatrix} C_{0} + \frac{1}{\rho_{0}} \sqrt{(\rho_{0}C_{0})^{2} + 4s\rho_{0}p_{pmma}(t)} \end{bmatrix} \text{ or } \frac{dy_{s}(t)}{dt} = \frac{1}{2} \begin{bmatrix} C_{0} + \frac{1}{\rho_{0}} \sqrt{(\rho_{0}C_{0})^{2} + 4s\rho_{0}p_{pmma}(t)} \end{bmatrix}$ Algebraic equation for shock velocity $y_{s}(0) = 0$ ODE for shock position Los Alamos Unclassified ted by the Los Alamos National Security, LLC LA-UR-15-24973

for the DOE/NNSA

Example: Use the algebraic equation for shock velocity and temporal exponential pressure decay for detonation-interaction into PMMA

$$U_{s}(t) = \frac{1}{2} \left[C_{0} + \frac{1}{\rho_{0}} \sqrt{(\rho_{0}C_{0})^{2} + 4s\rho_{0}p_{pmma}(t)} \right]$$
$$p_{pmma}(t) = Ae^{-\alpha t}$$

For 1-D shocks in PMMA under the phase-transition pressure (20 GPa): $\rho_0 = 1.186 \text{ g/cm}^3$ $C_0 = 2.603 \pm 0.058 \text{ mm/}\mu\text{s}$ $s = 1.518 \pm 0.044$ $I_1 = Marsh LASL Hugoniot Data$ Linear Fit 1st Leg $<math>I_1 = Marsh LASL Hugoniot Data$ Linear Fit 2nd Leg $<math>---a_L = 2.72 \text{ mm/}\mu\text{s}$

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Consider the ODE for shock position evolution and exponential pressure decay as a function of 1) <u>time</u> and 2) <u>PMMA thickness</u>

$$\frac{\mathrm{d}y_{s}(t)}{\mathrm{d}t} = \frac{1}{2} \left[C_{0} + \frac{1}{\rho_{0}} \sqrt{(\rho_{0}C_{0})^{2} + 4s\rho_{0}p_{pmma}(t)} \right]$$
$$y_{s}(0) = 0$$

1) Exponential pressure decay as a function of <u>time</u>:

 $p_{pmma}(t) = Ae^{-\alpha t}$ $\frac{dy_s(t)}{dt} = \frac{1}{2} \left[C_0 + \frac{1}{\rho_0} \sqrt{(\rho_0 C_0)^2 + 4s\rho_0 Ae^{-\alpha t}} \right]$ $y_s(0) = 0$

ODE numerically solved in Matlab using a clustering genetic algorithm approach developed by Milano & Koumoutsakos (2002).

2) Exponential pressure decay as a function of <u>PMMA thickness</u>:

$$p_{pmma}(y) = Ae^{-\alpha y}$$

$$\frac{dy_s(t)}{dt} = \frac{1}{2} \left[C_0 + \frac{1}{\rho_0} \sqrt{(\rho_0 C_0)^2 + 4s\rho_0 Ae^{-\alpha y_s(t)}} \right]$$

$$y_s(0) = 0$$

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Unclassified A genetic algorithm is used to determine exponential decay parameters by solving the ODE numerically and comparing to data

Exponential decay parameters for <u>temporal decay</u> agree well with SWIFT and PDV results

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Exponential decay parameters for <u>spatial decay</u> also agree well with SWIFT and PDV results

Application: SWIFT data recorded to characterize dynamic performance of standard and varidrive Hiper detonators in PMMA

HE pellet 1.45 g/cm³

HE pellet 1.60 g/cm³

HE pellet 1.50 g/cm³

HE pellet 1.55 g/cm³

HE pellet 1.70-1.75 g/cm³ (standard part)

5 ns exposures / 70 ns inter-framing

Unclassified

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

LA-UR-15-24973

HE pellet 1.65 g/cm³

Unclassified Varidrive Hiper detonators provide a good testbed for evaluating **SWIFT data-reduction procedures**

Results suggest SWIFT can be used as a sensitive tool for comparing fine details in output performance of detonators, e.g. technique is sensitive enough to quantify centerline output performance variations based on 0.05 g/cm³ changes in HE pellet density.

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Ongoing Work

Currently designing a set of dual SWIFT/PDV experiments to measure shock position, shock propagation time, and PMMA jump velocities for PMMA gap thicknesses between 0 and 10 mm. Shock pressure data as a function of both shock propagation time and PMMA thickness will be obtained and used to validate assumptions made in this data-reduction approach.

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Acknowledgments

- Funding provided by Joint DoD/DOE Munitions Program
- Thanks to:
 - ✓ Michael Martinez and Dennis Jaramillo (W-6) for HE firing support
 - ✓ Michele Milano (MAE University at Buffalo) for providing genetic algorithm
 - Mark Lieber (W-6) for assistance with implementation of Milano's genetic algorithm

