KAMAN Fuzing & Precision Products

MEMS Based Fuze Technology July 2015 – Robert Renz

- MEMS Technology Overview
- Kaman MEMS Design Overview
 - MEMS Safe and Arm
 - Fuze Assembly
- Performance Testing Summary
 - Arming Environments
 - Fire Train Testing
 - Live-Fire Gun Testing
- Conclusion

Present M550 Kaman 40mm 40mm Fuze **MEMS** Fuze

Kaman MEMS Technology

- MEMS Safe and Arm Device is constructed of a very strong Nickel-Cobalt metal alloy
- Produced using layer by layer additive technology with tolerance capabilities of ± 2 micron
- MEMS S&A Device is fully assembled and functional coming out of fab process
- MEMS S&A Device is then assembled into a completed fuze using proven micro-dispensing and pick-and-place manufacturing technologies

Kaman MEMS Safe and Arm Device

Kaman MEMS Based Fuze

Metal MEMS: How They Are Made

KAMAN Fuzing & Precision Products

Kaman MEMS Design

Kaman MEMS Safe and Arm Device

MEMS Fuze Installed in a 40mm Munition

Fuzing & Precision Products

MEMS Fuze Assembly

Kaman MEMS Design-Arming Environments

Kaman MEMS Design-Arming Timing Control

- Verge-escapement manages safe-separation timing
 - Tune-able timing for different ballistic characteristics
 - Timing is dependent on spin rate, number of teeth in vergeescapement, location of the center of rotation, mass of swing arm, length of swing arm

Kaman MEMS Design-Arming

Kaman MEMS S&A In Safe Position

Solid shutter between ignition and lead charges

Kaman MEMS S&A In Armed Position

Fuzing & Precision Products

Kaman MEMS Fuze Assembly

Packaged MEMS Fuze Assembly

Fuzing & Precision Products

Kaman Fuze Packaging

Kaman MEMS S&A Assembled on Wafer Level

Diced into Individual Fuzes

- Fuzes fabricated on a wafer level laminate fabrication and separated after assembly
 - Utilize semi-automated processes to reduce workmanship centric manufacturing that greatly improves quality
 - Loading occurs with micro-dispensing of slurry based energetics for the primary explosives
 - Assembly is laser welded together
 - Provides path to meet high volume production as well as aggressive cost targets

Kaman MEMS Fire-Train

Kaman MEMS Performance Testing

- Modelling of performance properties has been validated through test
- The MEMS was successfully tested as subsystems in the lab environment
 - Spin testing to verify unlock as well as timing variation
 - Set-back lock test to verify go/no-go level
 - Vibration and shock testing to demonstrate arming does not occur and the fuze remains safe and operational
 - Fire train DOE completed, including partial arm steps to confirm no-fire until >95% armed
- Live-fire gun testing completed
 - Rounds fired in 40mm low-velocity gun tests
 - Fuze demonstrated to successfully arm and fire

40mm MEMS Fuze Design Demonstrated to TRL-6

Kaman MEMS Successfully Tested in Live-Fire Rounds

40mm Low Velocity Environment

- MIL-STD 1316E Compliant
 - Out-of-line design
- Setback:
 - ~2,000 Gs set-back
- Spin:
 - > 3,000 RPM
- Arming Delay
 - 80 ms
- Initiation energy
 - 300uJ

Example Application with Kaman MEMS Fuze

Enabling new capability

Reduced size frees-up space for enhanced capabilities such as *stand off detonation*.

- Proximity sensor
- Power source
- Miniature fuze
- Usable for munitions down to 25mm
- Additional Explosive Charge

Other potential benefits:

- UXO reliability through redundancy
- Integrating HE into smaller rounds

Concept of a 40mm stand-off capable round

Kaman MEMS Family of Designs Nearing TRL-6

- Non-electric ignition design that utilized impact event
 - Stab primer integrated into MEMS
 - Piezoelectric energy generation to initiate the fire train
- Command-to-arm
 - No verge-escapement
 - Use for non-spinning, low-spin, or unique applications
 - Integrated with additional sensors or electronic circuitry
 - Safety locks can be mechanical, electrical, or a combination of both

Kaman MEMS Fuze Technology Conclusion

- The Kaman MEMS Fuze has been demonstrated to TRL-6 in a 40mm low-velocity round
- Kaman's approach has been to focus on <u>Design For</u> <u>Manufacturability/Assembly (DFMA) as well as Design To Unit</u> <u>Production Cost (DTUPC) to ensure the design meets the quality</u> and cost targets for future weapon systems
- Kaman's MEMS Fuzes make room for enabling technology in existing and next-generation weapon platforms

Kaman MEMS Based Fuze

Kaman MEMS Fuze Technology Conclusion

Questions?

Kaman MEMS Safe and Arm Device

Kaman MEMS Based Fuze

