Distribution Unlimited - PAO Log#: 443-15

U.S. Army Research, Development and Engineering Command

Fuze Design in Harsh Environments

Getting it Right the First Time

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Fuze Development Center

US Army RDECOM ARDEC Fuze Division Picatinny Arsenal, NJ

> Stephen Redington, PE 973-724-2127

July 9, 2015

NDIA 58th Fuze Conference – Baltimore, MD

Getting it Right the First Time

- INTRODUCTION
 - The Fuze Development Center
- What kind of Environments are we talking about?
 Unique Challenges
- Approaches to Development
- Environmental Influences on Approach
 - Getting it Right the First Time, Strategy for Development
- Summary

US ARMY

RDEGON

The Fuze Development Center

Fuze Development Center Mission: Accelerate New technology to the Field

US ARMY RDECOM

Challenges in Design

- Unique Challenges in Fuze Design:
 - Short service life (seconds) / Long storage life (20+ yrs)
 - Very high G shock (18,000 to 100,000 G and higher) with long duration (this is not a drop shock)
 - Little, if any, chance of prototype recovery for analysis after a flight test
 - Reliability critical / Mission critical items
 - Temperatures can be extreme in flight
 - Article testing without functioning often not possible after final assembly (Product Assurance is problematic)
 - Sample testing is getting more expensive
 - HERO, Lightning and other electromagnetic requirements add complexity

Design Methodologies

Concept Prototyping

A model for experimentation and development

UNCLASSIFIED: Distribution Statement A. Approved for Public Release; Distribution Unlimited

US ARMY

RDECOM

Design Methodologies

GHTER FOCUSED.

- Proof of Concept approach
 - Minimal investment up front. Larger investment downstream
 - Quick results but repeatability is often questionable
 - Documentation is often ambiguous or lacking
 - Often requires knowledge of a few key personnel that may, or may not be available in the future
 - Often problematic when transitioning to private industry for fabrication
 - Good concepts die late due to poor understanding of product requirements, poor documentation, lack of SMEs or cost overruns
 - Costs of canceled projects exceeds millions of dollars over several years

Design Methodologies

Integrated Manufacturability

An integrated model for experimentation and product development

UNCLASSIFIED: Distribution Statement A. Approved for Public Release; Distribution Unlimited

US ARMY

RDECOM

Design Methodologies

- Integrated Manufacturability approach
 - Higher up front cost. Smaller investment downstream
 - Longer schedule but highly repeatable
 - Manufacturing documentation is inherent in the process
 - Cycle times often improve with each iteration
 - Easy transition to private industry
 - Established baseline
 - A foundation for process improvement and cost reduction
 - Promotes teamwork and concurrent engineering
 - Quality is built in from the beginning

Environmental Influences

- Traditional Methods in Benign Environments

- Build something
- Test it

US ARMY

- Analyze what went wrong
- Fix it
- Repeat as necessary
- Traditional Methods in Harsh Environments
 - Build something
 - Test it
 - Wonder what went wrong
 - Get more managers , engineers and 'experts' involved
 - Make recommendations and changes
 - Repeat until funding depleted

Environmental Influences

- But what about Modeling and Simulation!
 - It can help but without grounding the model in reality results can be misleading
 - To ground the model in reality you need to....
 - Build something
 - Test it

US ARMY

- Wonder why the model didn't match the result
- Make recommendation and changes to the model
- etc.....
- Validated models should be taken with a grain of salt when pushed beyond boundaries (i.e. perform a reality check)

Avoiding the Death Spiral

• The Death Spiral

US ARMY

- Reluctance to make a change because too much time and money are already invested
 - Locked into a poor or problematic design
 - AKA Fix it but don't change anything
 - Ignoring root cause
 - Doing the same thing over again expecting a different result
- Experts are called in that were not budgeted
 - The same experts who's advice was ignored up front?
- Steps that yield insignificant progress for the program budget (i.e. death by risk mitigation)
 - Unproductive side experiments

Avoiding the Death Spiral

The problem

US ARMY

- Reliability concerns are often ignored in favor of testing a new concept.
- There is often little or no hardware to analyze after a test in the actual environment.
- Design short cuts and band aids tend to make the problem worse since they do not hold up in harsh environments.
- Programs with low budgets and tight schedules often take short cuts.
- How Integrated Manufacturability Helps
 - Increased focus on the entire solution up front (getting it right the first time).
 - Addresses manufacturing issues related to reliability by implementing and enforcing industry standards in development.
 - Increased focus on documentation and process
 - improved control over what is built, how it is built and what it was built with.

Do not rely on post test analysis for understanding what went wrong

Before

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED. UNCLASSIFIED: Distribution Statement A. Approved for Public Release; Distribution Unlimited

Getting it Right the First Time

- How Integrated Manufacturability Helps
 - Design reliability in up front; Avoid unanswerable questions downstream
 - Was the failure due to a poor solder joint?
 - Pay attention to solder quality and inspection
 - Was it inspected? Are there records?
 - Solder quality tends to be ignored in R & D
 - Was the failure due to ESD or poor handling?
 - Pay attention to handling during assembly
 - ESD procedures tend to be ignored in R & D
 - Was it put together correctly?
 - Avoid difficult manual assembly and procedures
 - Was it put together the same way?
 - R & D tends to ignore complexity of assembly

US ARMY

Getting it Right the First Time

 Avoid hand wiring and interconnects as much as possible

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED. UNCLASSIFIED: Distribution Statement A. Approved for Public Release; Distribution Unlimited

Getting it Right the First Time

Unsuccessful High-G Prototypes

US ARMY RDECOM

A GREAT WORK OF ART BUT NOT A GOOD DESIGN

Getting it Right the First Time

WARFIGHTER FOCUSED.

• Does this happen in your lab?

ESD is real. Even if you can't see a spark

UNCLASSIFIED: Distribution Statement A. Approved for Public Release; Distribution Unlimited

US ARMY

RDECOM

Getting it Right the First Time

• Do you know what your building and how your building it?

US ARMY

RDECOM

Getting it Right the First Time

- If you can't test it after you need to focus on testing it before.
 - Design testability in from the beginning
 - Provide test access after potting
 - Communication links on inductive power interfaces
 - Self monitoring and health checks
 - Telemetry

US ARMY

RDECOM

• In-circuit programming for development

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED. UNCLASSIFIED: Distribution Statement A. Approved for Public Release; Distribution Unlimited

Getting it Right the First Time

Other Tips

RDECON

US ARMY

- Avoid poor design practices
 - Poor footprint design in electronics
 - Inadequate or unobtainable manufacturing tolerances
 - Undocumented processes/materials
 - Lack of specifications or standards
- Modularity is great for experimenting but.....
 - Each interconnect adds cost and reduces reliability
 - Fuzes are a one time use item. Serviceability is not an issue

 Quality control is often left out of the equation when experimenting or developing

In closing...

- Not a big problem in benign environments but can lead to false conclusions in harsh environments
- Imagine the test goes wrong (Murphy's Law)
 - Ask yourself what questions arise and answer them before the test or design in a way to answer questions after the test
 - Integrated Manufacturability reduces the number of problems/questions to explore post test

UNCLASSIFIED: Distribution Statement A. Approved for Public Release; Distribution Unlimited

US ARMY

RNECON

UNCLASSIFIED: Distribution Statement A. Approved for Public Release; Distribution Unlimited

Integrating Manufacturability

Questions

Fuze Development Center

US Army RDECOM ARDEC Fuze Division Picatinny Arsenal, NJ

> Stephen Redington, PE 973-724-2127

