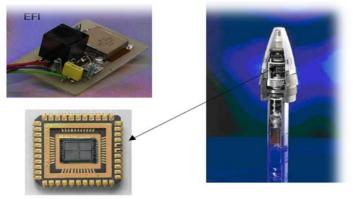
MCEFI DEVELOPMENT AT TNO


Fuse Conference 2015 | Gert Scholtes, Wim Prinse and Marco v.d. Lans

OVERVIEW

- Introduction
- Why an EFI initiator
- > Optimization of EFI system
- McEFI Research & development and testing
- Best option: McEFI
- Summary

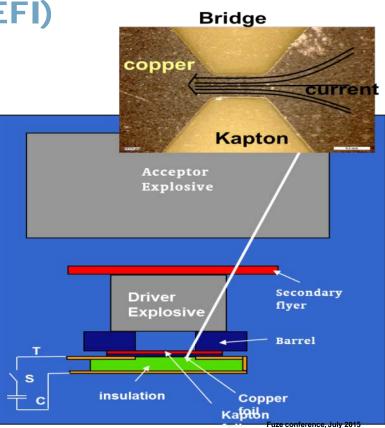
loating point processor

TNO CURRENT/FUTURE RESEARCH TRENDS THAT HAVE OUR ATTENTION

innovation for life

WHY AN EFI SYSTEM

- An EFI is intrinsically safer than standard initiators (no primary explosive); in-line with booster-main charge
- More reliable (So, no UXO's), conventional ignitors 5-10% duds
- > Functionality can be tested non-destructive
- Works much faster < microseconds i.s.o. milliseconds scale
- > Is compliant with new STANAG (4560) NATO defence regulations
- Not sensitive to Electro-Static Discharge (ESD)
- New opportunities (smart munitions for reduction of collateral damage; p.s.: Energy needed ~100mJ, CR2032 battery: >2000 times more energy)
- Current disadvantage: Price in range of \$1000, size; too expensive and too large for most applications
- Future: Micro Chip EFI (McEFI) → inexpensive; few dozens of \$, microchip based technology

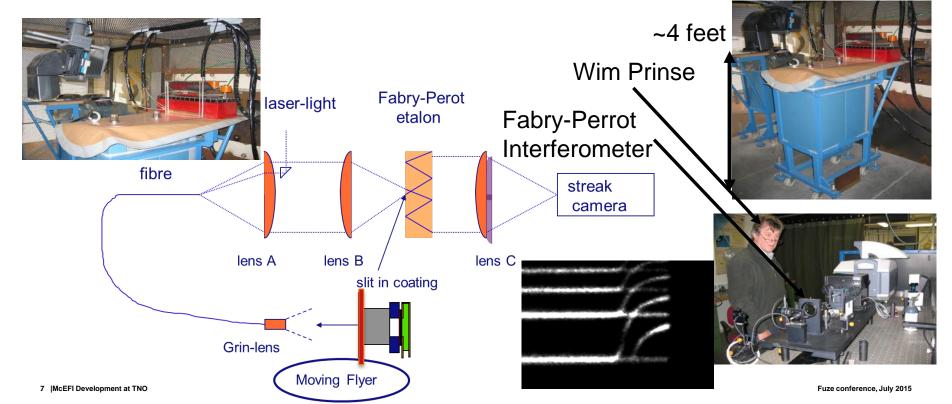


EXPLODING FOIL INITIATOR (EFI) (WITH SECONDARY FLYER)

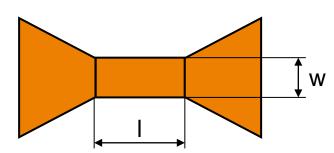
- Important components:
- High Voltage unit
- Switch
- Capacitor
- Bridge/transmission line
- Logic and other components and automatic production line

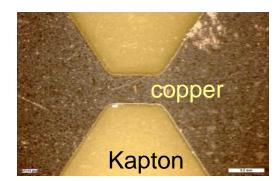
TNO innovation for life

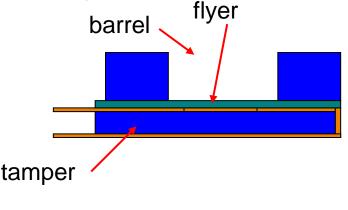
OPTIMIZATION OF EFI


- > State of the art facilities
- Important design aspects
 - > Energy use and materials of bridge
 - Shock impedance and effective flyer
 - Lorentz force in EFI systems
 - > LRC circuit optimization

Micro-chip technology favourite


SHOCK INITIATION RESEARCH AT TNO: MEGA AMPERE PULSAR AND FLYER IMPACT





EXPLODING FOIL/BRIDGE; IMPORTANT DESIGN ASPECTS

- > Dimension of the foil (length, width, thickness, shape, material)
 - More material and certain amount of Energy → lower temperature
 → lower maximum flyer velocity
 - > 0.12J → max. temperature copper ~100,000 K, aluminium ~150,000 K
- Tamper material: Shock impedance of the tamper higher: more energy deposited in exploding bridge
- > Thickness/size ratio and material of the flyer (next sheet)
- > Length and width of the barrel

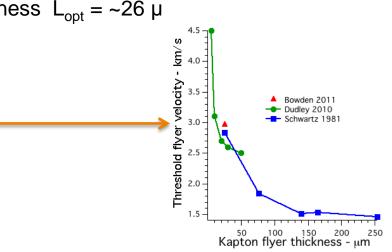
RATIO OF THICKNESS AND SIZE OF FLYER

- Shock criteria: Critical Energy fluence in to explosive ¹): $E = P u_p \tau$ with P= pressure, Up Part. Velocity and τ the time. Shock attenuation due to release wave from back of the plate or from periphery, so:
- For flyer plate time of thickness L and W_p the shock velocity in the plate: $\tau_1 = 2L / w_p$
- For a Rod with diameter D: time $\tau_2 = D/6c_e^2$ with $c_e =$ sound speed in shocked Explosive
- With shock Hugoniot of explosive Us = Co + Su_p we get: (Co sound vel., S parameter of expl.)
-) Optimum thickness/size ratio $\tau_1 = \tau_2$: L / D = wp / {4ce (2 + Co / Su_p)} ³)
- ¹)Walker, F. E., and R. J. Wasley, R. J., "Critical Energy for Shock Initiation of 1428 Heterogeneous Explosives", Explosivstoffe Vol.17 (1), pp. 913, 1969
- ²)James, H. R., "Critical Energy Criterion for the Shock Initiation of Explosives by Projectile Impact", *Propellants Explos., Pyrotech.* Vol. 13, pp. 3541, 1988.
- 3) Peter J. Haskins and Malcolm D. Cook, "A Modified Criterion for the Prediction of Shock Initiation Thresholds for FlyerPlate and Rod Impacts", 14th int. Detsymp 2010, p1421

9 |McEFI Development at TNO

innovation

RATIO L/D (CONT'D) AND LENGTH OF BARREL

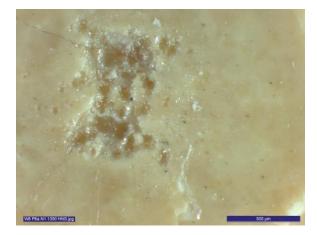

> A certain flyer size results in an optimum thickness of the flyer.

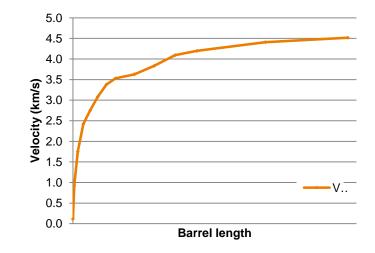
Example: Diameter = 300 $\mu \rightarrow$ optimized thickness $L_{opt} = \sim 26 \mu$

> Diameter = 350 $\mu \rightarrow L_{opt}$ = ~31 μ

> Diameter = 400
$$\mu \rightarrow L_{opt} = ~35 \mu$$

> However, a thin flyer needs more velocity!




innovation

LENGTH OF BARREL

-) Important: Maximum velocity but also integrity of flyer before impact on explosive pellet.
- Maximum barrel length depends strongly on LRC-system and flyer-thickness/integrity

TNO innovation for life

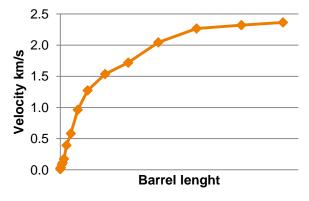
 \mathbf{B}_1

 I_2

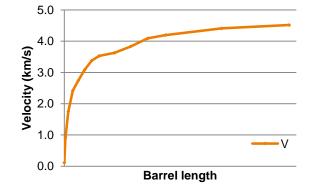
B

FORCES BETWEEN TRANSMISSION LINES

- Based on the law of Ampère, a current will produce a magnetic field around the electric current of the transmission line proportional to the amount of current
- The Lorentz law, is a law describing the force on a moving electric charge (current).
- So both transmission line produce a magnetic field resulting in an acting force between the two lines (parallel current: attracting force, opposite: repelling force


> $F = \frac{\mu_0 I_1 I_2}{2\pi r}$ with F the force in Newton, I_1 and I_2 the currents, r the distance, μ_0 the value of $4\pi \ 10^{-7}$ and *le* the length of the part of the transmission line

- Mega ampere pulsar: (large system: transmission line 2x2 cm, l_{max} = 500,000 Amp.
 40 µ distance: (first order estimate no integral over distance and current).
- F = 10 10⁶ N and acceleration ~231 10⁹ m/s²: → 23100 m/s Relevant for flyer velocity
- EFI: I_{max} =4000 Amp., ~300 microns. F = 9.6 N, accell. = 4 10⁶ m/s² → 100ns → 0.4 m/s : → Not relevant for flyer velocity


T

OPTIMIZED CIRCUIT

- > Electronic circuit of EFI
- wherein L and R are substantially parasitic in nature \rightarrow as low as possible
 - > Loop in circuit
 - > Impedance of switch, transmission lines.

Non-optimized circuit

S

С

R

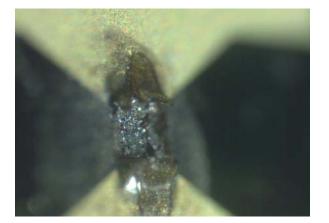
L

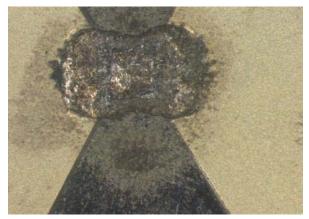
Optimized circuit

innovation for life

Foil

MICRO CHIP TECHNOLOGY


- > The next important factor in the production:
 - Inexpensive technology/production step
 - Mature technology is preferable
 - > Suitable for small parts thin layers
 - Clean, precise and reproducible
 - Not to far from TNO and
 - > Not to many process steps at different company's/laboratories
- Micro-chip technology is favourable:
 - Mature and cheap in large quantities (in production of about 50 wafers ~ \$1 \$2 per die)
 - Clean (clean room)
 - > Precise, reproducible and extremely suitable for small components
 - TU Delft chip production/development department close to TNO Rijswijk



EXAMPLE OF BRIDGE PRODUCTION AND TESTING

Bridges

Exploded bridges

MICRO CHIP EFI DEVELOPMENT/TESTING

Wafer

W6

W6 W6

W6

W6

W3

W3

W3 W3

W4

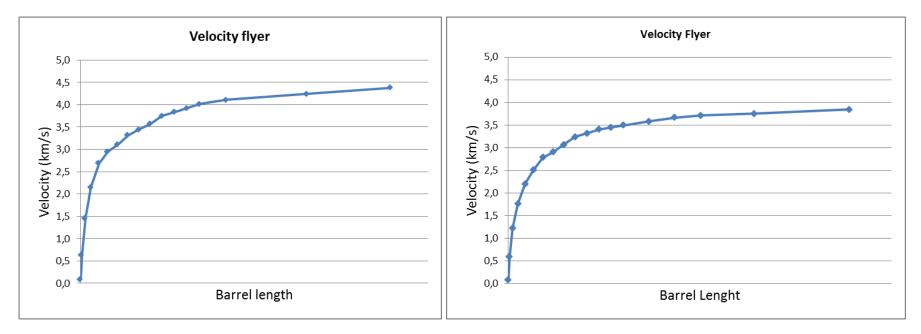
W4

W4

W4

W4

)	 Bridges design: Variation of size, thickness of bridge Variation of flyer thickness Variation in voltage
>	Measuring velocity and testing with HNS
)	Many test series



16 |McEFI Development at TNO

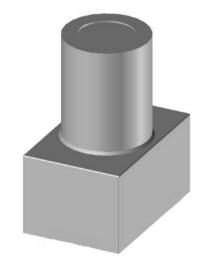
RESULTS TESTING

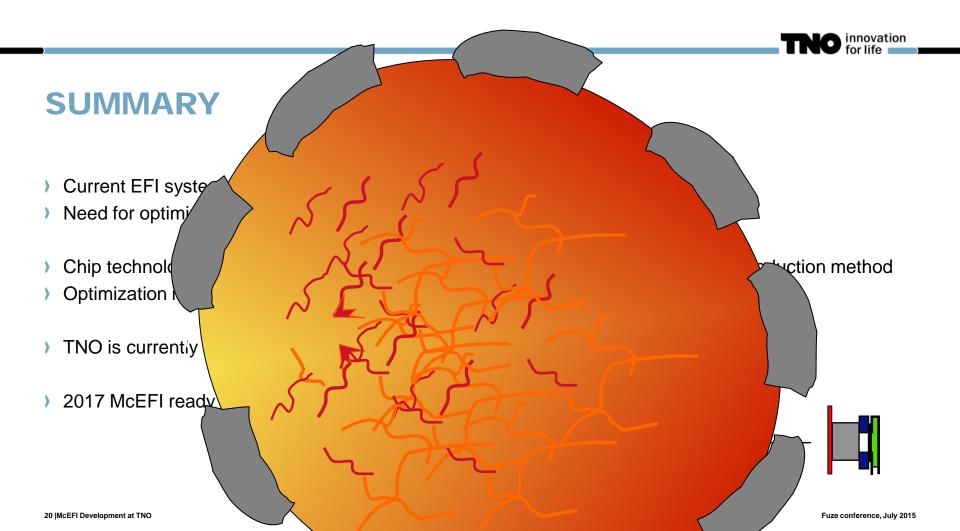
Velocity at 1000 V

TNO EXPERIENCE ON EXPLOSIVE FOIL INITIATORS

- Mega Ampere Pulsar for characterisation of explosives
 - ~Mega Ampere at 30,000 40,000 Volts
 - Flyers up to 25 mm, up to 1 mm thick
- Mini EFI system with
 - Solid state switch ~1400 Volts
 - Components of the shelf
- Current McEFI development
 - > ~1000 Volt
 - > Chip technology \rightarrow <1\$
 - Ready in 2017

Mini EFI





McEFI PACKAGE

