EXCELITAS TECHNOLOGIES

58th Annual Fuze Conference July 7 – 9, 2015

A Robust Methodology for Calculating MIL-DTL-23659 Fireset Compliance

Author and Presenter: Dr. Glen Kading

ENGAGE. ENABLE. EXCEL.

- Introduction
- MIL-DTL-23659F Requirements
 - Paragraph A.5.1
- Ideal wave model
- Derivation of single variable solution
- Calculation of Impedance Parameters
- Comparison to Empirical Data
- Pitfalls using an ideal wave model
 - Nonlinearity at low voltages
 - Fidelity of measurements
- Conclusion

- In order to qualify an initiator for a product, a laboratory fireset is required
- The laboratory fireset must be similar to the intended use fireset
- These conditions are set forth in MIL-DTL-23659
 - Differences are specifically stated in paragraph A.5.1 in Appendix A laboratory fireset
 intended use fireset

- Paragraph A.5.1 Firing Properties Firing Unit
 - Firing unit for firing properties tests, hard fire, and all-fire tests
 - shall be as close as possible to intended-use firing unit configuration
 - Firing switches that do not operate in the same voltage range as the intended firing switch shall not be substituted
 - Test firing unit shall have transient firing properties within 25 percent of intended use firing properties
 - After modifications to measure the necessary data such as a CVR
 - Transient firing properties are a measure of discharge impedance and should be a measure of dynamic (steady state) resistance, inductance, and capacitance as determined through short circuit fireset discharge analysis at appropriate voltages (threshold and all-fire voltages)
 - MASS and MNFV safety requirements shall be met after scaling by a ratio of ratios method (new in 23659F)

First positive peak/second positive peak ratio
 CELITAS

- The ideal equation for a damped sine wave
 - Closely approximates the ringdown of a fireset

-
$$I(t) = \frac{V}{(L\Omega)}e^{-\alpha t}sin(\Omega t)$$

-
$$\Omega = \sqrt{\omega^2 - \alpha^2}$$

$$-\alpha = \frac{R}{2L}$$

$$-\omega = \frac{1}{\sqrt{1000LC}}$$

- Inductance (L) is expressed in nanohenries
- Resistance (R) is expressed in Ohms
- Capacitance (C) is expressed in microfarads
- Time in nanoseconds

- On the ideal waveform
 - Let t₀ be the beginning of the ideal waveform
 - Let t₁ be the time at the first positive peak
 - Let t₂ be the time at the first zero crossing
 - Let t₃ be the time at the first negative peak
 - Let t₄ be the time at the second zero crossing

Derivation of single variable solution (continued)

- At t1 (maxima), $\frac{d}{dt} e^{-\alpha t} \operatorname{Sin}(\Omega t) = 0$
- At t2, Sin(Ωt) = 0

58TH ANNUAL FUZE CONFERENCE

- At t3 (minima), $\frac{d}{dt} e^{-\alpha t} \operatorname{Sin}(\Omega t) = 0$
- At t4, Sin(Ωt) = 0
- Half-cycle time (HCT) = $\frac{\pi}{\Omega}$
- HCT can be approximated by three different methods:
 - Estimate HCT by using t2-t0
 - Find t0 by extrapolating a line from the 10%-30% peak current to the yaxis zero crossing (Extrapolated Method)
 - Estimate HCT by using the two zero crossings (t4-t2)
 - Estimate HCT by using t3-t1 (first maxima and minima)

58TH ANNUAL FUZE CONFERENCE Derivation of single variable solution (continued)

At t1 (maxima) and t3 (minima):

$$-t_3 = t_1 + HCT$$

$$-\left|\frac{I(t_{1})}{I(t_{3})}\right| = -\frac{P_{1}}{P_{3}} = \frac{\frac{V}{(L\Omega)}e^{-\alpha t_{1}}sin(\Omega t_{1})}{-\frac{V}{(L\Omega)}e^{-\alpha t_{3}}sin(\Omega(t_{1}+HCT))}$$

- The ratio of the peaks can be calculated by the following derivation

$$- = \frac{e^{-\alpha t_1}}{e^{-\alpha t_3}} = \frac{e^{-\frac{R}{2L}t_1}}{e^{-\frac{R}{2L}(t_1 + HCT)}} = e^{\frac{R}{2L}(HCT)}$$
$$- \ln\left(-\frac{P_1}{P_3}\right) = \frac{R}{2L}(HCT) \text{ Thus } R = \frac{2L\ln\left(-\frac{P_1}{P_3}\right)}{(HCT)}$$

58TH ANNUAL FUZE CONFERENCE Derivation of single variable solution (continued) National Defense Industrial Association

• At
$$t_2$$
, Sin(Ωt) = 0, thus Ω (*HCT*) = π

•
$$\pi = \sqrt{\frac{1}{1000LC} - \left(\frac{R}{2L}\right)^2 (HCT)}$$

• Solve for C:

• C =
$$\frac{1}{1000L\left(\frac{R^2}{4L^2} + \frac{\pi^2}{(HCT)^2}\right)}$$

• Substituting R into the equation above:

$$-C = \frac{1}{\frac{\left[\frac{2Lln\left(-\frac{P_{1}}{P_{3}}\right)}{\frac{(HCT)}{4L^{2}}} + \frac{\pi^{2}}{(HCT)^{2}}\right]}}$$

58TH ANNUAL FUZE CONFERENCE Derivation of single variable solution (continued) National Defense Industrial Association

- All variables can now be expressed by a relation of the empirical data to a single variable (inductance).
- Iterate inductance to fit the model curve to the empirical data
 - Iterate until peak current is matched
 - Equations will automatically adjust the resistance and capacitance based upon measured data points
 - Align t2 for the measured and ideal waveforms

• Using the measured data:

- Inductance iterated to 24.74 nH to match peak current (1491 A)

11

TECHNOLOGIES

- Using the measured data:
 - Inductance iterated to 25.27 nH to match peak current (1491 A)

EXCELITAS TECHNOLOGIES

• Using the measured data:

- Inductance iterated to 22.45 nH to match peak current (1491 A)

- Neyer D-Optimal Threshold testing results
 - Two firesets characterized using this method on same product lot
 - Firesets were different by design to match different intended use firesets
 - Both firesets used to perform group A, B, C tests
- Impedances calculated by using the peak method for best fit
 - HCT = t3 t1
 - Fireset differences compared by calculating impedance at the full cycle frequency (reactance & resistance) for both firesets:
 - $X_L = 2\pi f L$

•
$$X_C = \frac{1}{2\pi fC}$$

• Differences in Impedance

- Calculated

Firing Voltage	% Impedance Difference	Impedance Component	% Difference	Difference Sum
Max	-1.6%	L (nH)	15.4%	
		C (μF)	21.9%	38.5%
		R (Ω)	1.2%	
Mean	-3.9%	L (nH)	15.6%	36.3%
		C (µF)	16.6%	
		R (Ω)	4.0%	
Min	-6.4%	L (nH)	14.8%	
		C (µF)	26.3%	46.6%
		R (Ω)	5.5%	
	-4.0%	Average Impedance Difference		

Measured

•		Group	% Change
	Fireset 1 vs.	Group A	-4.34%
	Fireset 2 Difference in	Group B	-4.45%
	Mu	Group C	-4.36%

- Impedance difference matches threshold differences much closer than the sum of the relative differences in impedance components
- Difference in peak currents (15%) and "ratio of ratios" defined in MIL-DTL-23659F,
 A.5.1 (17%) much higher than the threshold difference in data

- Nonlinearities of solid state switch
 - At low voltages, switch used performs in a nonlinear fashion
 - At turn on

- Fidelity of Measurements
 - An 8-10 bit oscilloscope is insufficient to properly bin the voltage output of the CVR.

70 +

- Presented a robust model to calculate impedance parameters based upon empirical CVR measurements
- Predictions are consistent with results during threshold testing
- Must match t_0 once the solid state switch exits nonlinear region of operation
- High precision oscilloscopes help accuracy of prediction greatly

Excelitas Technologies, Advanced Electronics Systems

Dr. Glen Kading

Electrical Design Leader (937) 353-2255

glen.kading@excelitas.com

Dr. Barry Neyer

VP Technology, Defense & Aerospace (937) 865-5586

barry.neyer@excelitas.com

Al Starner

Programs Leader (937) 865-3544 <u>allen.starner@excelitas.com</u>

Roy Streetz

VP, Energetic and Power Systems (937) 353-2242 roy.streetz@excelitas.com

EXCELITAS TECHNOLOGIES

ENGAGE. ENABLE. EXCEL.