EXCELITAS TECHNOLOGIES

58th Annual Fuze Conference July 7 – 9, 2015

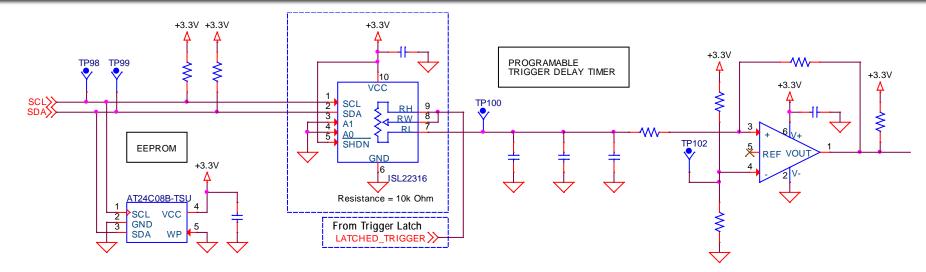
A Synchronous Addressed Communications Method for Coordinating Multiple Outputs and Effects in Fuzing Systems

Author: Steven P. Cornett

Presented by: Steven P. Cornett

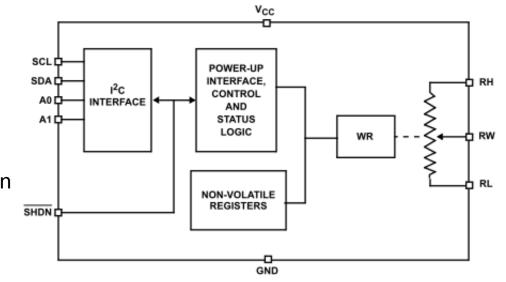
- Problem Definition
 - Selectable yield warheads require multiple effects
 - Multiple Effects useful in Multiple-layer penetration weapons
 - Robust and simple means to set multiple firing modules are required
 - Reduces manufacturing costs
 - Lowers number of conductors of cables & size of connectors
- Excelitas proposes a multi-drop network system to set multiple effects
- This presentation will cover
 - The elements used in the proposed communication interface
 - An explanation of how the elements interact
 - The work to date on the development of the interface
 - The path forward toward interface development

- Motivation for the effort
 - Originally motivated in response to NAC (National Armaments Consortium) research topic FUZ-15-27
 - Requested development of low voltage power and communication protocols for selectable yield, multi-mode, and multi-purpose warheads
 - The solution needs to be compliant with Fuze industry standards
 - MIL-STD-1901A for Ignition Safety Devices (ISD)
 - MIL-STD-1316 for Electronic Safe and Arm Devices (ESAD)
- The proposed system integrates commercially available networking systems with a robust 4-wire networking system
 - The solution should allow the operation of an internal data bus
 - Should also have a Electronic Module (EM) to multiple Firing Module (FM) interface that will be robust in a missile environment
 - Selected ARINC-429 physical layer interface
 - ARINC (Aeronautical Radio Incorporated)
 - Tutorial from Avionics Interface Technologies: <u>http://aviftech.com/files/2213/6387/8354/ARINC429_Tutorial.pdf</u>

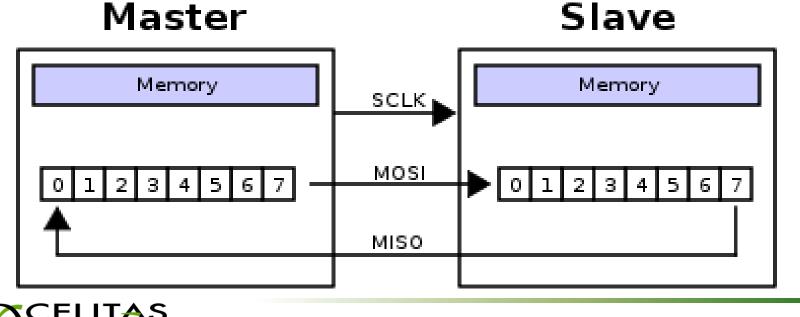

	2	F
Ē	ЗÙ	IS

- The I²C (Inter-Integrated Bus) is a multiple-master, multiple-slave bus introduced by Philips (now NXP) in 1982
 - Originally developed to allow microprocessor control of electronics through slave peripheral devices
 - Widely adopted as a standard by the electronics industry
- I²C is used in a wide variety of peripheral components useful to the defense industry
 - Digital Potentiometer
 - Non-volatile Memory (EEPROM, Flash, etc.)
 - Data acquisition
 - Analog to Digital Converter (A/D)
 - Digital to Analog Converter (D/A)
 - Temperature Sensors
 - Digital Output Accelerometer
 - Port Extension

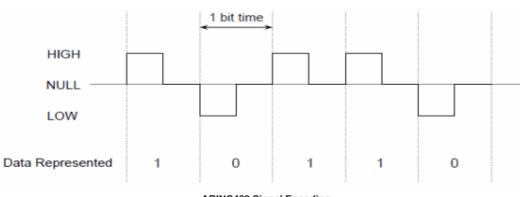
58TH ANNUAL FUZE CONFERENCE Example of I²C use in Fuzing



- I²C Components used in Fuzing
 - Digital Potentiometer
 - Calibration
 - Analog Timer (as above)
 - Data Acquisition
 - Time, temperature, acceleration
 - Mux and Switches
 - Non-volatile Memory


5

- SPI (Serial Peripheral Interface) is a synchronous full-duplex bus developed by Motorola Semiconductor (now spun off as Freescale)
 - Data is exchanged through a circular buffer
 - De facto standard available on microcontrollers and programmable logic
- Bus is designed to have one master and one slave per control line
 - Used for External Memory and LCD I/O
 - Common interface for Data Acquisition components (A/D, D/A)


ARINC 429 Data Bus Between Modules

- ARINC-429 is a combination of a two-wire full-duplex physical layer and communication protocol
- Physical layer consists of one line transmitter and one or more receivers
- 100KHz bit rate proposed

58TH ANNUAL FUZE CONFERENCE

- Four bit separation between data frames
- Tri-state signal combining signal and clock
- Clock integrated through 50% duty cycle between data and ground state

bit time 1/2 bit time 90% 10% Rise Fall Time Time ARINC429 Signal Waveform Parameters High Speed Bit Rate 100 kbps ± 1% 1 bit time 10 μ sec ± 2.5%

5 μ sec \pm 5%

 $1.5~\mu sec \pm 0.5~\mu sec$

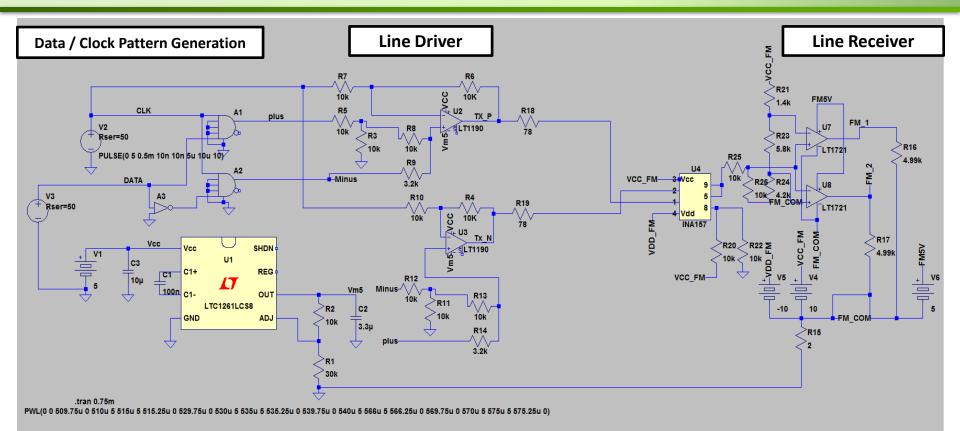
 $1.5~\mu\text{sec}\pm0.5~\mu\text{sec}$

ARINC429 Signal Encoding

EXCELITAS TECHNOLOGIES

ARINC 429 Protocol Tutorial. Avionics Interface Technologies, pp. 10-11

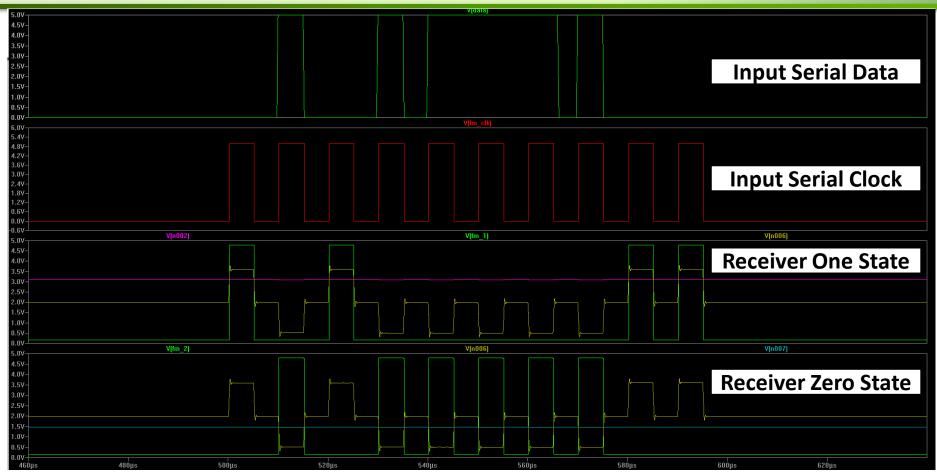
1/2 bit time


Rise Time

Fall Time

58TH ANNUAL FUZE CONFERENCE

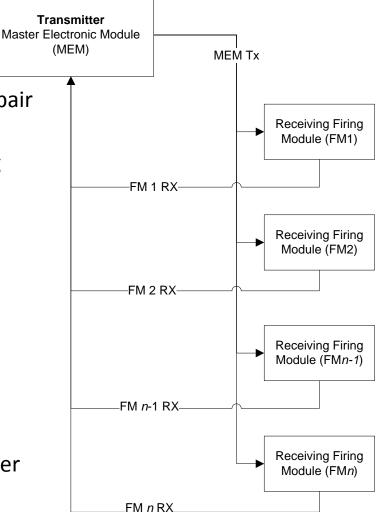
Physical Layer Simulation with LTSpice


- First Step was an electrical simulation of a single line driver and receiver
 - Simulation performed using LTSpice[®]
 - Models from Linear Technology and Texas Instruments
- Return impedance simulated by separation of 2Ω between driver and receiver

58TH ANNUAL FUZE CONFERENCE

Line Driver and Receiver Simulation Plot

- Line Driver and Receiver Transient Plot
 - Signal in Yellow is Output of Differential Amplifier U4
 - Digital state outputs from comparators U7 & U8 using signal from U4

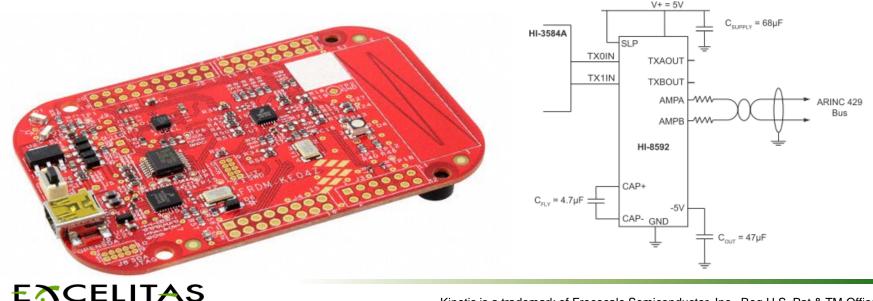


Network Structure

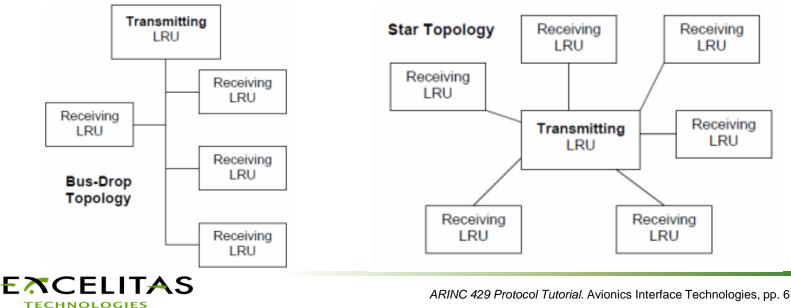
- Prototype Network Structure
 - Full-Duplex four-wire structure between
 Electronic Module and Firing Modules
 - Physically connected with shielded twisted pair cable
 - Separate pair for transmission and receiving channel
 - MEM Master Electronic Module
 - Originates Communications requests
 - Up to *n* Firing Modules (FM)
 - Respond to requests
 - "Speak only when spoken to"
 - Only one FM Line driver active
 - All others in High impedance output mode
 - FM address handling through a protocol handler
 - Prototyped with programmable logic
 - ASIC envisioned for production use

TECHNOLOGIES

32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
Ρ	EF	OF	#	Fram	ame Frame Data									R/	R/W FM Address																


- The data frame shall be 32 bits long
- The general elements of the frame consists of:
 - FM Address
 - Eight bits (255 FMs and Electronic Module)
 - Write or Read
 - 0 for Write, 1 for read
 - Frame data 16 bit length
 - Frames in transaction (1 to 8)
 - First Frame (OF) and End Frame (EF) bits
 - Beginning and ending of a transaction
 - Parity bit
 - Insures that that number of 1s transmitted is an odd number
 - Bit set or cleared to obtain count

- Initial proof of concept will incorporate elements of the FM Mockup
 - Digital Potentiometer to simulate Analog Timer
 - Digital Switch to handle timing range selection
- Initial proof of concept of FM protocol handler performed with a Kinetis[®] microcontroller board
 - Standard Arduino R3 form factor for expansion board design
 - Single SPI and I²C ports on board target device
- Off the shelf Line Driver and Receiver (Holt Integrated Circuits HI-8592)



TECHNOLOGIES

- Design Validation of Proof of Concept
 - Will modify a small ESAD design to prototype MEM and FM modules
 - ESAD successfully tested in high acceleration missions
- Design will prove and "dial in" network use in *n*-FM system
 - Examine reliability of strict Bus Drop versus Star Topology
- Network part of larger effort in multi-effects Fuze system development
 - Contact transmission, Charging, and Low Voltage Power Supply
- Goal of a cost-effective, highly manufacturable multi-effects Fuze

Excelitas Technologies, Advanced Electronics Systems

Steven P. Cornett

- Electrical Engineer, Energetic Systems
- (937) 865-6154
- <u>steven.cornett@excelitas.com</u>

Dr. Glen Kading

- Electrical Design Leader, Energetic Systems
- (937) 232-7375
- <u>Glen.kading@excelitas.com</u>

Al Starner

- Programs Leader, Energetic Systems
- (937) 865-3544
- <u>Allen.Starner@excelitas.com</u>

Roy Streetz

- Vice President, Energetic and Power Systems
- (937) 353-2242
- <u>Roy.Streetz@excelitas.com</u>

EXCELITAS TECHNOLOGIES

ENGAGE. ENABLE. EXCEL.