

Pulse Test of Firing Capacitor Characteristics

NDIA Fuze Conference Baltimore, MD 7-9 July 2015

Generally I'm not known for being too bright,

But, a Google search can make you an instant genius !

Source of Technique

A Web search turned up a "Technical TidBit" on the referent web site "Measuring Capacitor Self-Inductance and ESR"

> The purpose was to measure inductance and ESR with regards to the capacitors' pulse performance as a bypass capacitor in a digital circuit or its ability to shunt current in an ESD role.

High Frequency Measurements Web Page Douglas C. Smith URL: www.dsmith.org

New Application

Z and ESR C1210C475M5R1C

When we perform a ringdown test, We are looking for peak amperes, inductance, and resistance.

Most capacitor data is given at AC. Some data is DC but not pulse.

Pulse Testing

So, can we do pulse testing, and how does it relate to ringdown data?

Doug Smith Fixture

New Test Fixture

Test Set-Up

Pulse Generator 1 μsec pulse 2.5 volt amplitude 50 Ω source

Oscilloscope 100 MHz or Better 5 mv / div, 10 nS / div-typical Dependant on inductance, etc.

Use 50 ohm coax cables with BNC connectors, ~ 2 Ft and equal lengths.

What Do We See?

Typical Capacitor Charge Waveform

If we zoom in, this is what we see !

What Does That Waveform Represent?

Since we use a 2.5 volt pulse into a 50 ohm resistor, current, I (di) is 50 mA

Testing

Like a Kid with a new toy, I started testing all kinds of stuff!

Capacitors

NovaCap Wright Poly Film High voltage ceramic Regular chip ceramic

CVRs

Barrel Clamp (Stripline)

Resistors

Inductors

But, not the cat

General Parts

Surface Mount Resistor, .10 Ohms Measured L=2.2 nH, R=100.73 mΩ

Molded RF Inductor 220 nH Measured 186 nH

Firing Capacitors

Summary of Pulse Test vs. Ring Down in Freddie Fireset

Pulse Test		Ring Down	
NovaCap 3640R144K152P		I _{PEAK}	2544 A
L=	1.530 nH	L=	13.72 nH
R=	126 mΩ	R=	42.31 mΩ
Wright SMN6964TR		I _{PEAK}	2035 A
L=	4.115 nH	L=	16.49 nH
R=	213 mΩ	R=	65.74 mΩ
Vishay PolyFilm ?		I _{PEAK}	1487 A
L=	13.65 nH	L=	35.52 nH
R=	237 mΩ	R=	65.74 mΩ

Barrel CVR Measurement

Pulse Measurement Data: L=9.259 nH, R=15.9 mΩ

CVR Resistance is .005087 Ω , At 50 mA, E \approx 258 μ V. Not likely to measure that on my scope! But, it could also imply 10 m Ω of Fixture Resistance.

A Potential Firing Cap ?

Kemet C2225C104KFRACTU 0.1 μF, 1.5 KV

High Voltage X7R Dielectric, 500 – 3,000 VDC (Commercial & Automotive Grade)

Pulse Data: L=1.49 nH, 130 m Ω So I put two in parallel, must be twice as good, right?

2 in Parallel, Pulse Data: L=1.02 nH, 94 mΩ Well, not quite!

Have not performed ring down yet. Most all data sheets say X7R material not suitable for pulse applications. Need to run that to ground.

Summary

- The test method may have value in testing potential capacitors and measuring other components
- There appears to be a correlation between pulse inductance and performance
- There is a weak correlation between pulse ESR and performance

Questions?

Fred E. Piering Weacomm, Inc. 2585 Tuscaloosa Trl Maitland, FL 32751-5149 <u>weacomm@earthlink.net</u> Office: 407-645-1688 Cell: 321-356-0239