
 
Kurt Bruck 

Towards a Common Controller 
Software Architecture 

 
April 8, 2015 



 
1. Unmanned systems mission space is becoming more advanced 

(air/ground/sea collaboration) 
 

2. Unmanned systems vehicles are becoming more autonomous and 
have a decreasing need for unique and dedicated controllers to 
command them. 
 

3. The opportunity for a reduction in cost, logistics, training, and 
greater situational awareness  with a CCA implementation grows 
larger as 1 & 2 trend onward. 

 
 

 
 
 

 

Why a common control software architecture 



Core Team 

17 MAR 2015 JGRE CCA Study Team 

• Douglas Gregory:   Neya Systems 

• David Barnhard:   Kutta Technologies 
• Kurt Bruck:    QinetiQ North America 
• Bill Huff:    JHNA 

Team members representing the NAMC -  
not their individual companies. 



Problems with existing common software 

• Common to a subset of departmental needs 
• Each government organization has unique objectives for a CCA. 

• Strategy between departments vary: long-term versus short-term 

• Air domain focused departments generally leave out ground domain: 
•  (E-Stop, multi-path radios, IOP/JAUS, teleop control). 

• Ground domain focused departments generally leave out the air domain 
•  (Stanag 4586, complete mission planning features, general lightweight expectation). 

• Maintenance required 
• Common control software requires a high level of maintenance in order to not become 

obsolete in one or more domains.  

• SDK maturity 
• A solid SDK is critical to take advantage of innovation from industry 



Scope & Application 

Hardware scope – hardware independence 
• Objective – All hardware 

• 8 bit microcontrollers to up 32 core server systems 

• Threshold – Tactical hardware 
• ~smartphone to ~x86 quad-core 

Heterogeneous Robotics and Autonomous Systems (RAS) 
• Tactical air platforms (Group 1 UAS) 
• Ground vehicles/systems 
Representative Operational Environments 
• Tactical dismounted operations (e.g. CLARK) 
• Support and logistics operations (e.g. runway clearing) 
 



The Approach 

1. Top-Down 
• Evaluate High level architectures provide a solid basis to inform enterprise level decision 

• UAS Control Segment (UCS) 

• Future Airborne Capability Environment (FACE) 

• STANAG 4586 (Unmanned Aerial System messaging) 

• Joint Architecture for Unmanned Systems (JAUS – ground and maritime robotics) 

• Determine ideal, concept architecture: “blue-sky” 

2. Bottom-up 
• Investigate Specific programs and prototypes provides a rapid path to “real” 

development 
• Navy: SPAWAR’s Multi-robot Operator Control Unit (MOCU) 

• Army: Tactical Open Government Architecture (TOGA), WMI, Nett Warrior 

• Marines: Tactical Robot Controller 

3. Develop solutions for how the two meet 
 

 



Top-down (ideal concept architecture) 

• AS4-JAUS is ubiquitous amongst UGV’s 
• Strengthened by IOP standards 
• Gradual adoption by UUV’s 

• STANAG 4586 is ubiquitous amongst the UAV community 
• Soon to be a required messaging standard 

• UCS is a well-established, Mature, well-funded 
• UCS is migrating under the AS4 umbrella 
• UCS extensions can be created to allow for interoperability between STANAG 4586 

and AS4-JAUS 
 

 

UAS 
Control 

Segment 
(UCS) 

SAE AS4  
(JAUS) 

STANAG 
4586 



Bottom-Up Potential Candidate being explored: 
MOCU 

Development of a Common Controller Architecture could be expedited using a 
product like MOCU 

• Strengths: Mature, government owned product that has been used across many different robotic 
systems.  

• MOCU is being utilized in many different programs, including the Army’s TOGA program.  

 

• Weakness: The way MOCU is implemented works well for the Navy, but is not modular enough to suit 
the needs of industry and the larger robotics enterprise 

 

• Conclusion: MOCU would require industry and government support to enhance its architecture to more 
directly align with the UCS architecture and business model 

 

• Impact: MOCU, in its present form, is not a ready made solution for the CCA, but is very close 

 

• Risk Mitigation: Revise MOCU architecture to fundamentally align with UCS architecture and create 
transition package including data use rights, etc. for industry.  



Bottom-Up Meets Top-Down Option 1 

D
D

S 
/ 

U
C

S 
To

p
ic

s 

• Implement UCS service interfaces with MOCU 
component architecture 

 



Option1 Advanced implementations 

D
D

S 
/ 

U
C

S 
To

p
ic

s 
• MOCU/UCS “thin-client” resides as a 

component within Nettwarrior software 
framework 

 

• Host MOCU/UCS on MCWL Tactical 
Robot Controller 

 

• Host MOCU/UCS on TOGA controller 

 

• Implement TARDEC’s WMI presentation 
layer as a UCS component within MOCU 

 



Next Steps 

• Decide on 2-3 key architectural approaches 

• Develop a prototype 

• Test component elements on existing 
hardware 

 

 


