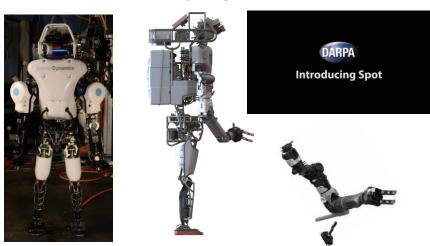
### **DARPA Ground Robotics**

Dr. Bradford C. Tousley
Director, DARPA Tactical Technology Office (TTO)

Briefing prepared for National Defense Industrial Association (NDIA)
Ground Robotics Capabilities Conference

April 8, 2015






### **Ground Robotics Goals**

- Improved autonomy, mobility, speed, cost, and energy efficiency
- Untethered operation using battery pack for mixed-mission operation
- Onboard perception to support autonomy
- Carrying the load to aid the warfighter
- Rapid commercial growth

DARPA Robotics Challenge Finals: June 5-6, 2015 in Pomona, CA

### Current programs



DRC: Task-level autonomy to operate in hazardous, degraded conditions

#### New program



Squad X: *New capabilities and unit-level experimentation* 



# DARPA Robotics Challenge (DRC)



# Why a Disaster Response Challenge?



#### Fukushima Daiichi, March 2011

 "... close study of the disaster's first 24 hours, before the cascade of failures carried reactor 1 beyond any hope of salvation, reveals clear inflection points where minor differences would have prevented events from spiraling out of control."

IEEE Spectrum, Nov 2011 p. 36

- We are vulnerable to natural and man-made disasters
- Humanitarian assistance/
  Disaster response (HADR) is 1 of
  the 10 primary missions of the
  US DoD
  - Sustaining U.S. Global Leadership: Priorities for 21st Century Defense, Letter from the White House, January 2012
- HADR is a universally understood and appreciated mission
- Enables participation of "best and brightest" performers from anywhere in the world



# **DARPA** Anticipated Robotic Challenge Trials Tasks

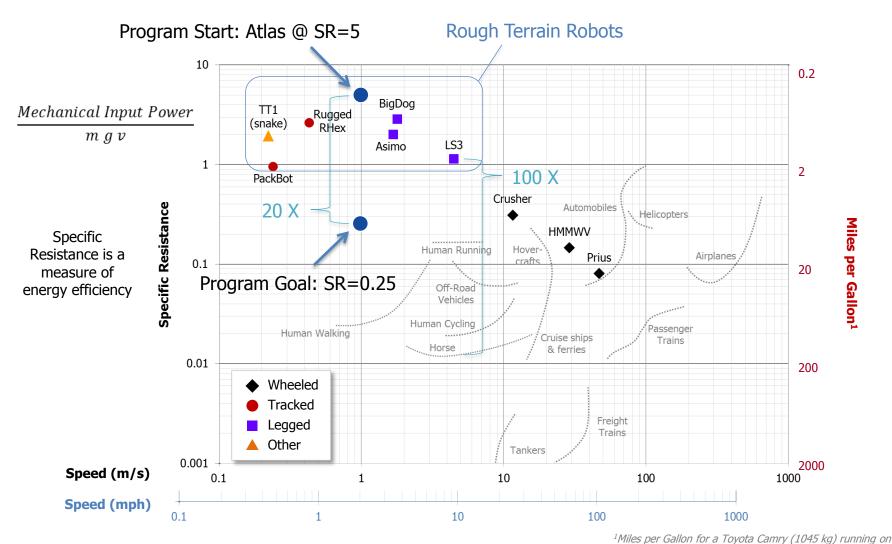
### **Capability Exercised**



| Autonomy - Perception | Autonomy – Decision-m | Mounted Mobility | Dismounted Mobility | Dexterity | Strength | Endurance |  |
|-----------------------|-----------------------|------------------|---------------------|-----------|----------|-----------|--|
| X                     | Χ                     | Χ                |                     | Χ         |          |           |  |
| X                     |                       |                  | Χ                   |           |          | Χ         |  |

Sample Tasks

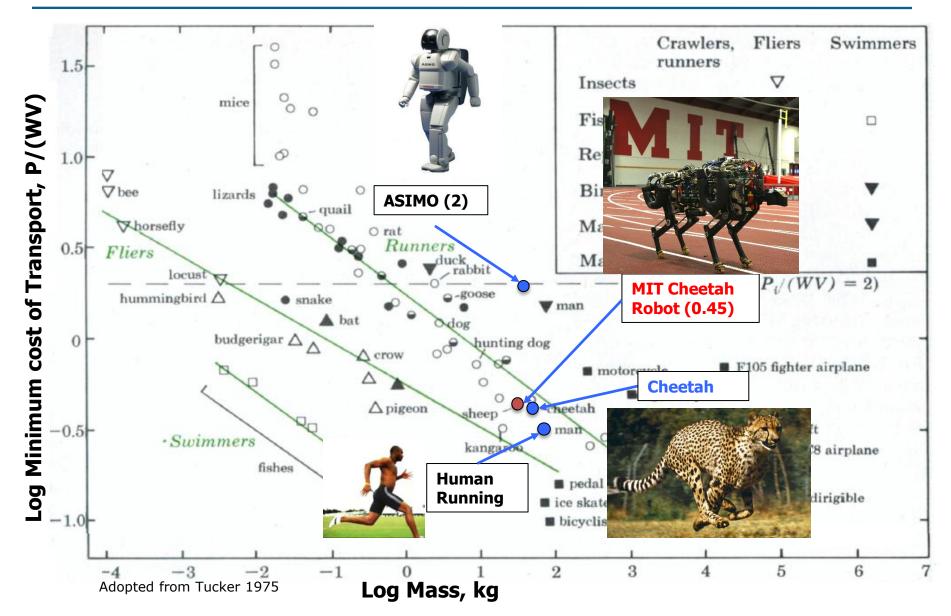
| 1. Drive utility vehicle (e.g. Gator, Ranger)      |   | Χ | Χ |   | Χ |   |   |
|----------------------------------------------------|---|---|---|---|---|---|---|
| 2. Travel dismounted 20 m through various terrains | Χ |   |   | Χ |   |   | Χ |
| 3. Remove debris blocking entryway                 | Χ |   |   | Χ | Χ | Χ | Χ |
| 4. Open door, enter building                       | Χ |   |   | Χ | Χ |   | Χ |
| 5. Climb industrial ladder/stairs/walkway          | X |   |   | Χ |   |   | Χ |
| 6. Break through wall                              | X | Χ |   |   | Χ | Χ | Χ |
| 7. Locate and close valve                          | X | Χ |   | Χ | Χ | Χ | Χ |
| 8. Connect fire hose                               | X |   |   | Χ | Χ | Χ | Χ |




# **DARPA** Task Example: Terrain






# **DARPA** Energy Efficiency of Vehicles + Robots



gasoline, using an energy conversion efficiency of 25%



# **DARPA** Total Cost of Transport (P<sub>total</sub>/WV)





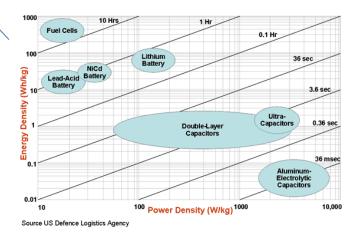
# DARPA Legged Squad Support System (LS3)










# **DARPA** Cloud Robotics + Robotics Beyond the Cloud

- World's data storage now measured in zettabytes (10^21 bytes)
  - By comparison number of synapses in human brain: ~ 10^14
  - About 10 billion images have been uploaded
- World's computing capacity approaching 1 zetta OPS
  - Google is one of world's largest consumers and manufacturers of computers
  - Highest performance video games now do 80% of their computing in the cloud
- High speed wireless connection to the Internet becoming ubiquitous
  - Example: Google Chromecast (\$35)
- Batteries have low energy density (approx. 1/10 fossil fuels)
  - SWaP is at a premium in mobile devices
- Hard part of robotics is between the ears (of the robot)
  - Many problems get easier with lots of data + processing
    - Example: Use of maps for autonomous driving
    - · Example: Visual object perception
- Big Idea : Put the robot brain on the cloud
  - Side benefit all robots learn from each robot's experience
- We still needs to develop competency in:
  - Unstructured, austere environments
  - Intermittent communications
  - Better-than-human performance
  - Low SWaP
  - Limited a priori knowledge
  - Critical (human life) missions



A server room in Council Bluffs, Iowa.

Photo: Google/Connie Zhou





# Squad X Core Technologies (SXCT)



# **Robots Leading Formations**



- Currently requires an operator to maneuver the robot, which reduces the situational awareness of one (or more) squad members
- Situational awareness gained from sensors requires humans to detect and classify potential threats and is often not organic to squad
- Potential to provide standoff from threats while simultaneously providing offensive and defensive capabilities
- A young Marine asked, in reference to the LS3, "Can you get it to carry our IED-detection equipment?"



### **Robots in Formation**



- Robot is autonomously following an operator; it is not following in formation
  - Perception capabilities focused on following the operator
  - Operator must carry additional load to lead robot
- Robot is responsible for sensing the entire world and does not leverage sensing capabilities of, or information from, other members in the squad
- Potential to offload physical burden while simultaneously providing offensive and defensive capabilities
- A young Marine asked "Can you get the LS3 to follow us in formation?"

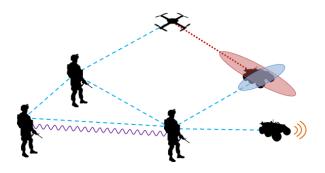


# **DARPA** Technology Development Goals

The Squad X Core Technologies program comprises four Technical Areas:

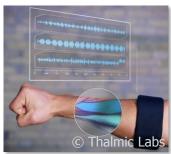
| 1 | Precision<br>Engagement   | Enable the rifle squad to precisely engage threats out to 1,000 meters while maintaining compatibility with infantry weapon systems and human factors limitations                                                             |
|---|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | Non-Kinetic<br>Engagement | Enable the rifle squad to disrupt enemy command and control, communications and use of unmanned assets to ranges greater than 300 meters while maneuvering at a squad-relevant operational pace                               |
| 3 | Squad Sensing             | Enable the rifle squad to detect line of sight and non-<br>line-of-sight threats out to 1,000 meters while<br>maneuvering at a squad-relevant operational pace                                                                |
| 4 | Squad<br>Autonomy         | Enable the rifle squad to improve their individual and collective localization accuracy to less than 6 meters in GPS-denied environments through collaboration with unmanned systems maneuvering reliably in squad formations |




### TA4 – Squad Autonomy: Manned-Unmanned Teaming

**Adapt:** Multi-agent techniques for human and machine collaborative localization

**Extend:** Current perception techniques for increased speed and robustness


**Develop:** Unmanned system behaviors (e.g., scouting and formation keeping)

#### **Multiple Techniques and Platforms**



#### **Squad-Relevant Behaviors**

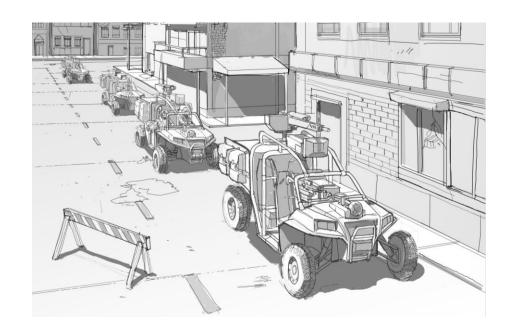




#### **Payoffs:**

- Squad-level localization with heterogeneous agents in GPS-denied environments
- Manned/unmanned teaming at increased operational tempo with minimal interventions

- **Challenges:** Accuracy and drift, over both time and distance, with SWaP-C constraints
  - Operational tempo in complex and dynamic environments




## Proposed Program: Mobile Infantry

Mobile Infantry would seek to explore the development of a system-based, mixed team of mounted/dismounted warfighters and semi-autonomous variants of current or planned small off-road platforms

#### **Proposed Program Goals:**

- Execute an expanded mission set from those currently employed
- Allow for a combined set of mounted and dismounted operations and for a larger area of operations over more aggressive timelines than standard infantry units
- Maintain dismounted warfighter scales for operational deployment
- Develop platform/sensor systems that are adaptations of existing/expected platforms



