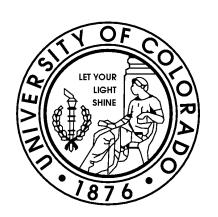


Solid Power


Ultra High Energy, Safe & Low-Cost Solid-State Batteries

Douglas Campbell, President & CEO doug.campbell@solidpowerbattery.com (720)300-8167

Solid Power History and Opportunity

 Initial research on <u>ultra high energy</u>, <u>safe and low cost all solid-state batteries</u> performed at CU-Boulder under funding from DARPA

- Company established in 2012; company operations initiated in 2013; worldwide exclusive license & company facility established in early 2014
- Solid Power is a long-term play to displace Li-ion:

"Solid-State Batteries Will Offer the Highest Technical Value for Consumer Electronics Within 15 Years"*

^{*}Source: Lux Research, "Beyond Li-Ion: A Roadmap for Next-Generation Batteries," 2013

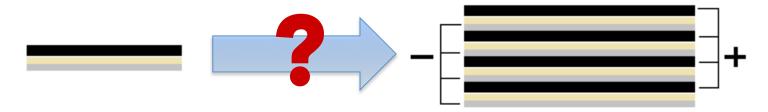
WHY SOLID-STATE?

Conventional Li-ion can be safe, but safety is expensive

- Non-flammable
- 5V+ stable voltage window
- High temperature stability
- Long calendar life
- Could enable Li metal anode
 - High specific capacity and discharge rate capability
 - o Could eliminate the need for copper current collector
- Could enable new cathode materials or enhance conventional materials
- Allows for more packaging options (bipolar designs, unpackaged cells, etc.)

AJ Gill/YouTube

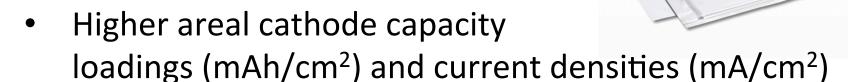
SOLID-STATE BATTERY TYPES



Thin Film Batteries

Several mAh or less

- Typically based on lithium phosphorus oxynitride (LiPON)
- Processing methods include magnetron sputtering, chemical vapor deposition (CVD), pulsed laser deposition (PLD), thermal evaporation, and various printing methods
- Ideal for microbatteries: sensors, smart cards, embedded electronics, medical devices, and RFID applications


High stack-level energy

But how do you scale?

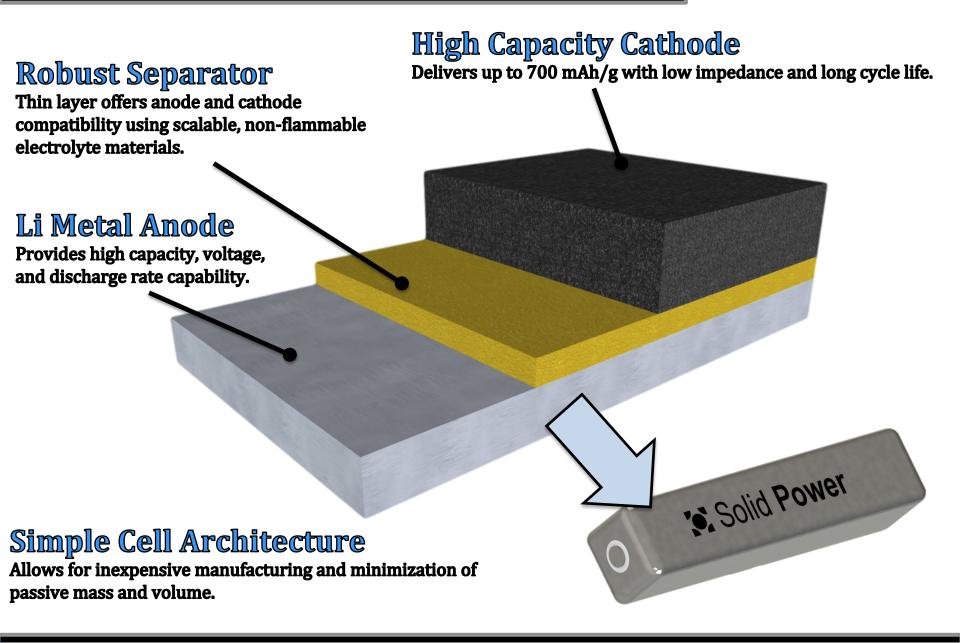
SOLID-STATE BATTERY TYPES

Bulk Solid-State Batteries

- Electrolyte/separator materials include poly(ethylene oxide) (PEO), glassy or ceramic Li-P-S, oxides and phosphates with garnet, perovskite, or NaSICON structures
- Materials produced as powders or melts and processed using extrusion, compaction or tape casting combined with sintering, or various coating techniques

More scalable, but high current densities and non-ideal material layers pose issues

SOLID-STATE BATTERY COMPANIES



Microbattery

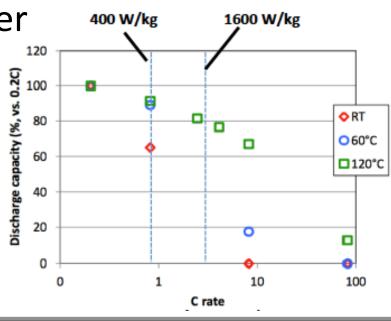
Large Format

SOLID POWER TECHNOLOGY

Cell-Level Performance Projections

Parameter	SOTA Li-lon	Solid Power
Energy (Wh/kg)	150-260 → 2-3X Improvement — :	400-500
Energy (Wh/L)	400-600 → 1-1.5X Improvement →	500-800
Power (W/kg)	100-2000	>300 (temp. dependent)
Cycles	>500	>500
Safety	Acceptable w/ Features	Excellent
Shelf Life	2-8 years	10+ years
Temp. Operation	-20-60°C	0-150°C

Value for Military Power

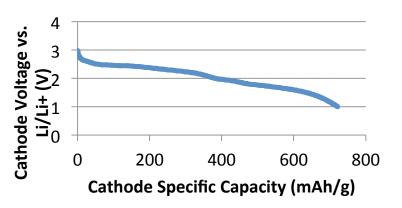

Unmatched combination of specific energy, cycle life, power and safety

- Near-term cell-level specific energy >300 Wh/kg
 kg with mid-term potential >500 Wh/kg
- High rate capability for a high energy battery

 >90% capacity retention after 500 cylces

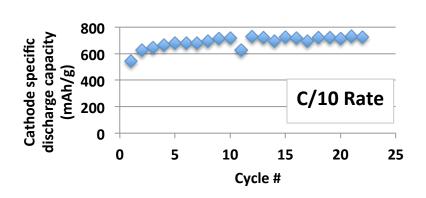
Excellent safety features:

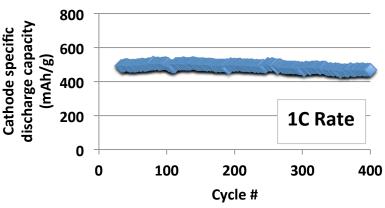
- No volatile electrolyte
- Stable at high temps
- Oxygen-less system

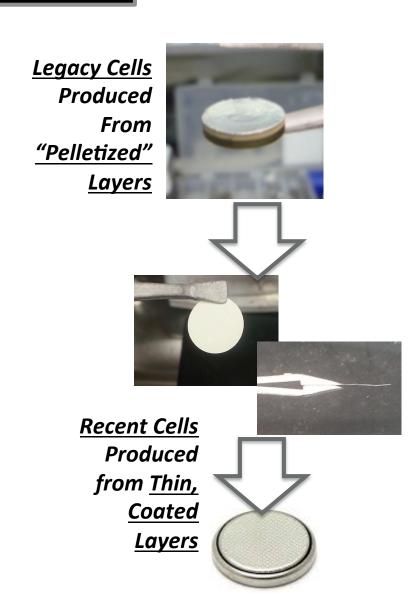


EARLY LAB-SCALE CELL DEMONSTRATIONS

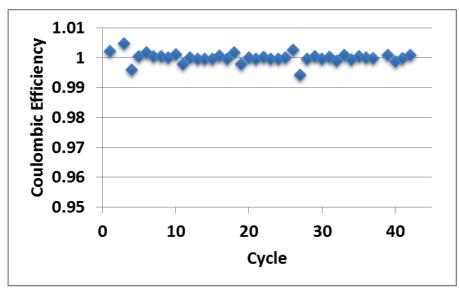


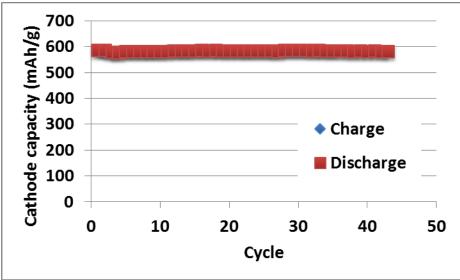

- Early cell-level demonstrations performed using small, thick single stack pellets
- Excellent material-level performance but in an impractical configuration


- Single-stack 1.27 cm diameter cell, InLi anode
- Capacities based on <u>total</u> cathode mass
- Tested at 60°C



RECENT DEVELOPMENTS: CELL PROCESSING


- Cathode and separator materials optimized for processing ease, mechanical robustness, and high conductivity
- Process allows for tunablity of material properties while maintaining scalability
- Enables truly high energy, "bulk" solid-state cells



CYCLING WITH LI METAL ANODE

- Li metal anode, separator and cathode contain all scalable materials
- Tested at 60°C with C/10 rate; ~40 days of data collection
- Capacities based on total cathode layer mass
- High coulombic efficiency, stable capacity, and no resistance rise

CELL SCALE-UP

Solid Power

- Metal foil current collector coated on both both sides with cathode & separator
- High throughput rollto-roll processes

COMMERCIALIZATION STRATEGY

- Establish Solid Power as a U.S.-based supplier of high value energy storage systems for the military, aerospace and niche industrial markets
- Engage the broader rechargeable battery market (high volume) via engaging strategic industry partners via licenses, joint ventures or partial acquisitions

Market Engagement

Technology & Product Development Timeline

CURRENT PARTNERS

Solid Power

- Research:
 - Technology development and qualification
 - IP portfolio expansion

 Full-scale prototype devices for the Missile Systems military and aerospace markets

Raytheon

- Market Validation:
 - Formal Joint Development Agreements (JDA) with industry partners in oil & gas and aircraft markets
 - Numerous Material Transfer Agreements (MTA) w/ auto OEMs and suppliers for cell validation testing

KEY ONGOING INITIATIVES

- **Solid Power**
- ARPA-E RANGE Program: ultra high energy rechargeable batteries for EV's
- U.S. Air Force: ICBM Liquid reserve battery replacements
- MDA: Thermal battery replacements
- U.S. Army: High energy batteries for smart munitions
- NASA: High energy, safe rechargeable batteries for manned spacecraft
- AFRL: Long-life rechargeable batteries for military spacecraft

