
0

Stuart A. Whitford
Booz Allen Hamilton

18th Annual NDIA Systems Engineering Conference
Springfield, VA

28 October 2015

17803
Software Safety Functionality

Hazard Assessment

Focusing Level of Rigor (LOR) on the
Safety-Critical Software Decision Points

1

Agenda

• The Challenge

• MIL-STD-882E Guidance

• Focusing the Effort

• Safety-Significant Software Function (SSSF) Hazard Assessment

• Examples

• Conclusion

 NOTE: Blue highlighting in this presentation is for emphasis.

2

The Challenge: Achieving Required “Level Rigor”
MIL-STD-882E paragraph 3.2.18 defines Level of Rigor (LOR) as:

• “the depth and breadth of software analysis and verification activities
necessary to provide a sufficient level of confidence that a safety-critical or
safety-related software function will perform as required.”

From MIL-STD-882E, paragraph 4.4.3, Table VI:
• If LOR 1 (the highest) tasks are unspecified or incomplete, the Standard

requires a Program Manger to “prepare a formal risk assessment for
acceptance of a HIGH risk.”

• If LOR 2 tasks are unspecified or incomplete, the Standard requires a
Program Manger to “prepare a formal risk assessment for acceptance of a
SERIOUS risk.”

“The definitions in 3.2 and all of Section 4 delineate the minimum mandatory
definitions and requirements for an acceptable system safety effort for any DoD
system.” [MIL-STD-882E paragraph 4.1]

-882E Guidance The Challenge Focusing the Effort SSSF Hz Assess Examples Conclusion

3

MIL-STD-882E Mishap Severity
3.2.36 Severity. The magnitude of potential consequences of a mishap to
include: death, injury, occupational illness, damage to or loss of equipment or
property, damage to the environment, or monetary loss.

SEVERITY CATEGORIES (from MIL-STD-882E, Table I)
1) Catastrophic:

• death . . . loss equal to or exceeding $10M

2) Critical:
• permanent partial disability . . . exceeding $1M but less than $10M

3)Marginal:
• one or more lost work day(s) . . . exceeding $100k but less than $1M

4)Negligible:
• injury . . . not resulting in a lost work day . . . less than $100k

-882E Guidance The Challenge Focusing the Effort SSSF Hz Assess Examples Conclusion

4

MIL-STD-882E Software Control Categories
3.2.38 Software control category. An assignment of the degree of autonomy,
command and control authority, and redundant fault tolerance of a software
function in context with its system behavior.

SOFTWARE CONTROL CATEGORIES (SCC) (from -882E, Table IV)
1) Autonomous (AT)
2) Semi-Autonomous (SAT)
3) Redundant Fault Tolerant (RFT)
4) Influential (INF)
5) No Safety Impact (NSI)

-882E Guidance The Challenge Focusing the Effort SSSF Hz Assess Examples Conclusion

5

MIL-STD-882E Software Safety Criticality Matrix (Table V)

Severity
\\

Control

Catastrophic
(1)

Critical
(2)

Marginal
(3)

Negligible
(4)

1 (AT) SwCI 1 SwCI 1 SwCI 3 SwCI 4

2 (SAT) SwCI 1 SwCI 2 SwCI 3 SwCI 4

3 (RFT) SwCI 2 SwCI 3 SwCI 4 SwCI 4

4 (INF) SwCI 3 SwCI 4 SwCI 4 SwCI 4

5 (NSI) SwCI 5 SwCI 5 SwCI 5 SwCI 5

-882E Guidance The Challenge Focusing the Effort SSSF Hz Assess Examples Conclusion

SwCI = Software Criticality Index

6

MIL-STD-882E Required Levels of Rigor (Table V – continued)

SwCI Level of Rigor Tasks

SwCI 1 Program shall perform analysis of requirements, architecture,
design, and code; and conduct in-depth safety-specific testing.

SwCI 2 Program shall perform analysis of requirements, architecture, and
design; and conduct in-depth safety-specific testing.

SwCI 3 Program shall perform analysis of requirements and architecture;
and conduct in-depth safety-specific testing.

SwCI 4 Program shall conduct safety-specific testing.

SwCI 5 Once assessed by safety engineering as Not Safety, then no safety
specific analysis or verification is required.

-882E Guidance The Challenge Focusing the Effort SSSF Hz Assess Examples Conclusion

7

MIL-STD-882E Task 208: Functional Hazard Analysis

208.1 Purpose. … safety-critical functions (SCFs), … safety-related
functions (SRFs) ... will be allocated or mapped to the system design
architecture in terms of hardware, software, and human interfaces to
the system. ... allocate and partition SCFs and SRFs in the software
design architecture; and identify requirements and constraints to the
design team. … Assign a SwCI for each SSSF [Safety-Significant
Software Function] mapped to the software design architecture.

-882E Guidance The Challenge Focusing the Effort SSSF Hz Assess Examples Conclusion

8

MIL-STD-882E Guidance on Performing Software Safety

B.2.2.3 Software Safety Criticality Matrix (SSCM) tailoring ... SwCI 1 from
the SSCM implies that the assessed software function or requirement is
highly critical …and requires more design, analysis, and test rigor than
software that is less critical...

Process tasks. Process tasks to consider include … safety review, design
walkthrough, code walkthrough, independent design review, independent
code review, independent safety review, traceability of SSFs, SSFs code
review, SSFs, Safety-Critical Function (SCF) code review, SCF design
review, test case review, test procedure review, safety test result review …

Test tasks. Test task considerations include SSF testing, functional thread
testing, … failure modes and effects testing, out-of-bounds testing, safety-
significant interface testing, … independent testing of prioritized SSFs, …

 SSF = Safety-Significant Function

-882E Guidance The Challenge Focusing the Effort SSSF Hz Assess Examples Conclusion

9

Achieving Focused Software Safety Level of Rigor

For each SwCI 4 SSSF
• Perform required Safety-Specific

Testing along with non-safety testing
• Ensure that SwCI 4 tests are tagged

and reported appropriately

Perform a system-level FHA
• Allocate SSSFs to the

software architecture
• Assign SwCI to each SSSF

For each SwCI 1, 2, or 3 SSSF identified in the
FHA, perform a SSSF Hazard Assessment
• Perform required analyses, focusing on

safety-critical software decision points
• Perform In-Depth Safety-Specific Testing
• Document a worksheet

-882E Guidance The Challenge Focusing the Effort SSSF Hz Assess Examples Conclusion

10

Safety-Critical Software Decision Points – some examples:

For Navy weapon systems, typical safety-critical software decision points are:

– Is it safe to arm/fire/launch the weapon?

– Is the track a friendly or non-hostile track?

– Is there a dangerous system condition that needs immediate response?

Each of the required analyses (requirements, architecture, design, code) and
the in-depth safety-specific testing should be focused on these safety-critical
decision points within each SSSF.

-882E Guidance The Challenge Focusing the Effort SSSF Hz Assess Examples Conclusion

11

SSSF Hazard Causal Factors

For each safety-significant software decision point within the SSSF, assess
the requirements/architecture/design/code for potential problems that could
impact the decision. Software makes decisions based upon data. Problems
with data include:

• Data latency (late or early arrival of data used in the decision)
• Data corruption or loss (e.g., from transmission or mishandling)
• Data coherency (e.g., mismatched elements in a “set” of data used in the

decision)
• Invalid or erroneous data value (e.g., message from an external system or

function)

Each required analysis (requirements/architecture/design/code) should look
for weaknesses that could impact the integrity of the data used in the safety-
critical software decision.

-882E Guidance The Challenge Focusing the Effort SSSF Hz Assess Examples Conclusion

12

SSSF Mitigations

For potential causal factors identified within the SSSF, assess the
requirements, architecture, design, code for potential mitigations that prevent
or detect and respond to each causal factor. These are often some form of
redundancy, such as:

• (in communication) checksums, CRCs, required response, repeated transmission
• (in data) additional messages, additional message fields, input validation criteria
• (in processing) checkpoint/restart, recovery blocks, N-version programming

Each required analysis (requirements/architecture/design/code) should look
for strengths that help ensure the integrity of the data used in the safety-
critical software decision.

-882E Guidance The Challenge Focusing the Effort SSSF Hz Assess Examples Conclusion

13

In-Depth Safety-Specific Testing

For the causal factors and mitigations found, identify appropriate in-depth
safety-specific testing to 1) validate the SSSF mitigations and 2) provide
some assurance of absence of occurrence of the potential SSSF causal
factors under credible levels of system stress. The following kinds of testing
should be considered:

• Stress • Endurance • Load

• Boundary limit • Error handling • Failover

• Out of sequence • Out of range • Fault injection

-882E Guidance The Challenge Focusing the Effort SSSF Hz Assess Examples Conclusion

14

A Tale of Two “Threads”
At the System Engineering Level:

4.3.7.2.3 Safety-Critical Path Analysis, Thread Analysis, and UML Sequence
Diagrams ... a path would be defined as events that, when performed in a
series (one after the other), cause the software to perform a particular
function. . . UML sequence diagram . . . Functional Flow Diagrams (FFDs)
and DFDs . . . [Joint Software System Safety Engineering Handbook (JSSSEH), 2010]

At the Software Design Level

Thread (computing) . . . In computer science, a thread of execution is the
smallest sequence of programmed instructions that can be managed
independently by a scheduler, which is typically a part of the operating
system. [August 26, 2015 from the Wiki: http://en.wikipedia.org/wiki/]

-882E Guidance The Challenge Focusing the Effort SSSF Hz Assess Examples Conclusion

15

What is “Architecture”?

There are many definitions out there. The following is what I tend to
use:

‘Architecture is concerned with the selection of architectural elements,
their interaction, and the constraints on those elements and their
interactions.’

[D. E. Perry, A. L. Wolf (1992). Foundation for the Study of Software Architecture.” ACM SIGSOFT
Software Engineering Notes 17 (4), pp. 40—52.]

‘Architecture focuses on the externally visible properties of software
“components.” ’

[L. Bass, P. Clements, R. Kazman (1998). Software Architecture in Practice. Reading, MA: Addison
Wesley Longman, Inc.]

-882E Guidance The Challenge Focusing the Effort SSSF Hz Assess Examples Conclusion

16

Architectural Analysis (an example)

Safety critical command and control allocated to a distributed architecture:
– Does the architecture provide adequate checks for the integrity of

communications (e.g., checksums, CRCs)?
– Does the architecture provide adequate, timely positive and negative

feedback (e.g., “Can’t Comply”, “Will Comply”, “Have Complied”)?
– Do the interfaces between software components provide effective and

timely communication of safety-significant fault detection and handling?

-882E Guidance The Challenge Focusing the Effort SSSF Hz Assess Examples Conclusion

17

System Thread (Path) Analysis for a ‘Safe Weapon’ SSSF

Operator CSCI 1 CSCI 2

[] Safe Wpn  [] []

[]
[]

WILCO (or
 CANTCO)

[]
[]

[]

[] [] Safe Wpn  []

[] [] Ack/Nak []

CSCI = Computer Software Configuration Item
WILCO = “Will Comply”
CANTCO = “Can’t Comply”

Ack = ‘Valid’ Message Acknowledge
Nak = ‘Invalid’ Message (Negative) Acknowledge
Safe Wpn = Safe Weapon

-882E Guidance The Challenge Focusing the Effort SSSF Hz Assess Examples Conclusion

18

Multi-threaded Software Design

Strengths:
 Allows software to be more responsive to an unpredictable external

environment (new inputs from an operator or another computer)
 Each thread can be appropriately prioritized

Weaknesses:
• Improperly synchronized threads can corrupt shared data
• Improperly synchronized threads can deadlock (block each other

forever)
• Improperly prioritized threads can cause starvation or unpredictable

delays
• Poor language or tool support for the programmer

-882E Guidance The Challenge Focusing the Effort SSSF Hz Assess Examples Conclusion

19

Multi-threaded design of a ‘State Manager’ SSSF (example)

Thread A (lower priority):

If wpnState not eq SHUTDOWN

 . . . getStateMutex
 . . . superState = Homing
 . . . wpnState = initiateFuzing
 . . . releaseStateMutex

Thread B (higher priority):

 [thread “unblocks”]
Critical fault detected
. . . getStateMutex
. . . superState = Operating
. . . wpnState = SHUTDOWN
. . . releaseStateMutex
 [thread eventually “blocks”]

-882E Guidance The Challenge Focusing the Effort SSSF Hz Assess Examples Conclusion

20

‘State Manager’ SSSF (example continued)

Thread A (lower priority):

Critical fault detected
. . . getStateMutex

. . . superState = Operating

. . . wpnState = SHUTDOWN

. . . releaseStateMutex
 [this unblocks Thread B]

Thread B (higher priority):

 [thread “unblocks”]
If wpnState not eq SHUTDOWN
 . . .getStateMutex (attempts)
 [this blocks thread]

 . . .getStateMutex (succeeds)
 . . . superState = Launch
 . . . wpnState = launchInit
 . . . releaseStateMutex

-882E Guidance The Challenge Focusing the Effort SSSF Hz Assess Examples Conclusion

21

‘State Manager’ SSSF (solution)

Thread A (any priority):

getStateMutex
If wpnState not eq SHUTDOWN
 . . superState = Homing
 . . wpnState = initiateFuzing
releaseStateMutex

 [move the check inside
 the mutex block]

Thread B (any priority):

Critical fault detected
. . . getStateMutex
. . . superState = Operating
. . . wpnState = SHUTDOWN
. . . releaseStateMutex

-882E Guidance The Challenge Focusing the Effort SSSF Hz Assess Examples Conclusion

22

Multi-threaded design of a ‘Weapon Inhibit’ SSSF (example)

Thread A (lower priority):

Old 20s Weapon Inhibit
timer expires
clearWpnInhbt ()

 . . . wpnInhibit = FALSE

[note that no ‘shared data’
mutex is used for wpnInhibit]

Thread B (higher priority):

[unblocks on receipt of new
Weapon Inhibit command]
. . . if old timer active, cancel it
. . . wpnInhibit = TRUE
. . . Initiate a (new) 20s timer
[thread blocks on task
completion]

-882E Guidance The Challenge Focusing the Effort SSSF Hz Assess Examples Conclusion

23

‘Weapon Inhibit’ SSSF (solution)

Thread A (any priority):

20s Weapon Inhibit timer expires
clearWpnInhbt(storedTimestamp)
. . getInhibitMutex
. . if wpnInhibitTimestamp EQ
 storedTimestamp
 [from the OLD timer’s
 “currentTime”]
. . . . wpnInhibit = FALSE
. . . . wpnInhibitTimestamp = 0
. . releaseInhibitMutex

Thread B (any priority):

New Weapon Inhibit command
. . getInhibitMutex
. . if old timer active, cancel it
. . wpnInhibitTimestamp =
 currentTime()
. . wpnInhibit = TRUE
. . Initiate a new 20s timer and
 “store” a copy of the
 wpnInhibitTimestamp with it
. . releaseInhibitMutex

-882E Guidance The Challenge Focusing the Effort SSSF Hz Assess Examples Conclusion

24

‘Concurrency in software is difficult. However, much of this
difficulty is a consequence of the abstractions for concurrency
that we have chosen to use. The dominant one in use today for
general-purpose computing is threads. But non-trivial multi-
threaded programs are incomprehensible to humans.’

[The Problem with Threads, Technical Report No. UCB/EECS-2006-1,
Edward A. Lee, Professor, Chair of EE, Associate Chair of EECS, University
of California at Berkley, January 10, 2006]

Multi-threaded Software Design

-882E Guidance The Challenge Focusing the Effort SSSF Hz Assess Examples Conclusion

25

Safety Critical Data ‘Corruption’

A correctly implemented algorithm operating on corrupted safety-critical data
can have unintended catastrophic results.

Some sources of corrupted data:
• Noise in digital message transmission
• Physical events/upsets during data storage
• Multi-threaded shared data
• Shared data between ‘main’ and Interrupt Service Routines
• Caching of data
• Loss of transient status data in failover or ‘recovery’

-882E Guidance The Challenge Focusing the Effort SSSF Hz Assess Examples Conclusion

26

Conclusion

Programs often stop the analysis of software safety with the identification of
the SwCI, then focus the software safety effort on the tagging of software
requirements (as ‘Safety’) and the testing of tagged requirements.

• Provides, at best, evidence of the accomplishment of LOR 3 to service safety
review boards

• Results in a requirement to document HIGH or SERIOUS unknown software
safety risk for LOR 1 and 2 software functionality, due to incomplete LOR, for
acceptance by the appropriate service authority

The focused SSSF Hazard Assessment approach:
• Provides clear evidence of application of the appropriate LOR focused on each

SSSF
• Identifies the CFs, mitigations, and In Depth Safety-Specific Testing performed for

each SSSF, focused on the key safety-critical decision points

-882E Guidance The Challenge Focusing the Effort SSSF Hz Assess Examples Conclusion

27

Questions?

Stuart Whitford
Senior Lead Scientist

Booz Allen Hamilton
1550 Crystal Dr, Suite 1100

Arlington, VA 22202
Tel (540) 903-7035

whitford_stuart@bah.com

28

Backup Slides

29

Requirements Analysis

Tag requirements associated with each SSSF as “safety” and assess for:
• Completeness

-- Do the requirements cover: Input validity/sequence?
Early/late/non- arrival of input?

-- Are the requirements unambiguous?
-- Are they testable?

• Potential conflict with other requirements
• Bi-directional traceability

30

Architecture Analysis

Map each SSSF to the architecture and assess for:
• Partitioning/isolation of SSRs (allocation of SSRs to software components).
• Coordination of command and control of safety-critical system functionality

among software components.
-- Does the architecture provide adequate checks for the integrity of

communications (e.g., checksums, CRCs)?
-- Does the architecture provide adequate, timely positive and negative

feedback (e.g., CANTPRO, CANTCO, WILCO, HAVCO - see MIL-STD-
2045-47001D/DOD Interface Standard: Connectionless Data Transfer
Application Layer Standard)?

-- Do the interfaces between software components provide effective and timely
communication of safety-significant fault detection and handling?

• Message structure/usage
-- Are safety-significant data mapped to interface messages in a manner to

facilitate safe, reliable, and timely communication between the software
components?

31

Design Analysis

Map each SSSF to the software design and assess for safety impacts from:
• Potential control flow problems between design elements
• Potential latency issues
• Potential OS functional failures on the SSSF
• Problems with thread synchronization
• Problems with interrupt servicing

32

Code Analysis

Perform a “backward flow” analysis of the code from safety-critical decision
points in the software.

Based on the results of the Requirements, Architecture, and Design
Analyses, perform other appropriate code analyses:

• Timing analysis – For safety-critical hard real time requirements, use appropriate
static or dynamic code analysis tools to analyze the implementation of the time-
critical SSSF functionality to determine worst case execution time (WCET).

• Interrupt analysis – Perform a code analysis of the coordination of interrupt
handling with interruptible and non-interruptible safety-critical processing
associated with SSSF.

• Algorithm correctness – Perform a code analysis of the correctness of the
implementation of any safety-critical algorithm(s) associated with the SSSF. This
should cover both correctness and timeliness of the execution of the algorithm.

• Thread analysis – Perform a code analysis of thread synchronization and use of
safety-critical data objects associated with the SSSF (looking for shared data race
problems or thread deadlock).

33

In-depth Safety-Specific Testing

In-depth Safety-Specific Test cases should come from the SSSF analyses
and be focused tests beyond normal requirements-based testing:

• Boundary limit testing:
-- Data range limits
-- Timing limits

• Robustness/stress testing
• Fault injection testing
• State transition testing
• Out of sequence testing
• Out-of-range value testing
• Error and exception handling testing

34

Tools to Support Software Safety Analysis

Use tools to help analyze the SSSF in the context of the Architecture,
Design, or Code (leverage those in use by the software developers or
obtain):

• Software architecture and design modeling and analysis tools, such as
those supporting Architecture Analysis and Design Language (AADL),
Unified Model Language (UML), or Systems Modeling Language
(SysML)

• Static code analysis tools that support focused design and code
analyses, such as thread race/deadlock detection or program slicing

• Source code cross reference tools that support searching, cross-
referencing, and navigation (forward and backward) of source code trees

35

Some References

 Joint Software Systems Safety Engineering Workgroup. (2010). Joint Software System Safety
Engineering Handbook (JSSSEH). Indian Head, MD: Naval Ordnance Safety and Security
Activity.

 S. Beatty (2003). “Where Testing Fails.” Embedded Systems Programming. August, 2003. pp.
36-41.

 P. Butcher (2014). Seven Concurrency Models in Seven Weeks: When Threads Unravel.The
Pragmatic Programmers, LLC.

 B. P. Douglass (2002). Real-Time Design Patterns: Robust Scalable Architecture for Real-
Time Systems. Boston, MA: Addison-Wesley.

 P. Koopman (2010). Better Embedded System Software. Carnegie Mellon University.
Drumnadrochit Press.

 D. Simon (1999). An Embedded Software Primer. Boston, MA: Addison-Wesley.

	Slide Number 1
	Agenda
	The Challenge: Achieving Required “Level Rigor”
	MIL-STD-882E Mishap Severity
	MIL-STD-882E Software Control Categories
	MIL-STD-882E Software Safety Criticality Matrix (Table V)
	MIL-STD-882E Required Levels of Rigor (Table V – continued)
	MIL-STD-882E Task 208: Functional Hazard Analysis
	MIL-STD-882E Guidance on Performing Software Safety
	Achieving Focused Software Safety Level of Rigor
	Safety-Critical Software Decision Points – some examples:
	SSSF Hazard Causal Factors
	SSSF Mitigations
	In-Depth Safety-Specific Testing
	A Tale of Two “Threads”
	Slide Number 16
	Architectural Analysis (an example)
	System Thread (Path) Analysis for a ‘Safe Weapon’ SSSF
	Multi-threaded Software Design
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Multi-threaded Software Design
	Safety Critical Data ‘Corruption’
	Conclusion
	Slide Number 28
	Backup Slides
	Requirements Analysis
	Architecture Analysis
	Design Analysis
	Code Analysis
	In-depth Safety-Specific Testing
	Tools to Support Software Safety Analysis
	Some References

