vvvvvv

He_sear EEEEEEEEEE

Avoiding Overruns in the Specification of
Non-Functional Requirements

Barry Boehm, USC

NDIA SE Conference 2015
October 29, 2015

10/29/2015

L]
SYSTEMS ENGINEERING Outllne

Research Center

=) Critical nature of non-functional requirements (NFRs)

— Also called System Qualities, ilities

— Major source of project overruns, failures

— Poorly defined, understood

— Underemphasized in project management

 Example sources of project overruns

— The conspiracy of optimism and its effect on SE

— Inflexible requirements

— Overagile and Underagile Methods

— Optimizing some NFRs at the expense of others: Security

— Chaotic nature of NFR definition, understanding
 DoD-SERC NFR definition, practices efforts

* Principles for avoiding the sources of project overruns

Critical Nature of NFRs

Major source of DoD, other system overruns

SYSTEMS ENGINEERING
Research Center

* NFRs have systemwide impact
— System elements generally just have local impact
 NFRs often exhibit asymptotic behavior
— Watch out for the knee of the curve
e Best architecture is a discontinuous function of NFR level
— “Build it quickly, tune or fix it later” highly risky
— Large system example below

$100M |
Required
Architecture:
__ | Custom; many
$50M cache processors
1 Original
Original Cost Architecture:
Origtagr Spec | Modified Agter |
| | CIHCTTOCT V] Prbtotyplng |
1 2 3 4
Response Time (sec)

10/29/2015

Example of Current Practice

Research Center

e “The system shall have a Mean Time Between Failures of
10,000 hours”

e What is a “failure?”

— 10,000 hours on liveness

— But several dropped or garbled messages per hour?
e What is the operational context?

— Base operations? Field operations? Conflict operations?
 Most management practices focused on functions

— Requirements, design reviews; traceability matrices; work
breakdown structures; data item descriptions; earned value
management

e What are the effects of or on other SQs?
— Cost, schedule, performance, maintainability?

ssrvsvoncenne PrOlif@ration of Definitions: Resilience

Research Center

 Wikipedia Resilience variants: Climate, Ecology, Energy Development,
Engineering and Construction, Network, Organizational, Psychological, Soil

 Ecology and Society Organization Resilience variants: Original-ecological,
Extended-ecological, Walker et al. list, Folke et al. list; Systemic-heuristic,
Operational, Sociological, Ecological-economic, Social-ecological system,
Metaphoric, Sustainabilty-related

* Variants in resilience outcomes

— Returning to original state; Restoring or improving original state;
Maintaining same relationships among state variables; Maintaining
desired services; Maintaining an acceptable level of service; Retaining
essentially the same function, structure, and feedbacks; Absorbing
disturbances; Coping with disturbances; Self-organizing; Learning and
adaptation; Creating lasting value

— Source of serious cross-discipline collaboration problems

L]
SYSTEMS ENGINEERING Outllne

Research Center

e Critical nature of non-functional requirements (NFRs)
— Also called System Qualities, ilities
— Major source of project overruns, failures
— Poorly defined, understood
— Underemphasized in project management

=) Example sources of project overruns
— The conspiracy of optimism and its effect on SE
— Inflexible requirements
— Overagile and Underagile Methods
— Optimizing some NFRs at the expense of others: Security
— Chaotic nature of NFR definition, understanding
 DoD-SERC NFR definition, practices efforts

* Principles for avoiding the sources of project overruns

Relative Size Range

The Conspiracy of Optimism
Take the lower branch of the Cone of Uncertainty

2x

!

1.#5x%

0.5xn

0.25%

Size (SLOC)
Complated W size
Programs + Cost (5)
USAFESD
W Froposals
N B
+ -
ML » 1—__—_‘.___—'-—_
m _F‘__________".
* e
" . + . F_,..—"‘
]
Praduct Dietail
Concept of Regts. Design Cresign Aecepted
Operation Spec. Spec. Spec. Software
& A & A A A
Feasilility Plans Procuct Drtail Dewvelop
and Rgts. Design Design and Test

Phases and Milestones

7

10/29/2015

SYSTEMS ENGINEERING
Research Center

Added Cost of Minimal Software SysE
Based on COCOMO Il calibration data

92

-

o

o
|

o0
o
|

63

(o)
o
I

38

»
o
|

18

N
o
!

I | I I

10 100 1,000 10,000

Software Product Size (KSLOC)

% Added Cost, Very Low vs. Very High RESL Rating

10/29/2015

SYSTEMS ENGINEERING

Research Center

100 -

Percent of Time Added to Overall Schedule

10/29/2015

90 -
80 -
70 -
60 -
50 -
40 -
30 -
201 @

10

o

How Much Architecting is Enough?

Sweet Spot

0 10 20 30 40 50 60

Percent of Time Added for Architecture and
Risk Resolution

Percent of Project Schedule Devoted to
Initial Architecture and Risk Resolution

Added Schedule Devoted to Rework
(COCOMO Il RESL factor)

Total % Added Schedule

Sweet Spot Drivers:
Rapid Change: leftward

High Assurance: rightward

Inflexible Requirements: Dual Cones of Uncertainty
— Obsolete large command and control system

LY p—

Uncertainties, changes in
competition, technology,

Zx — organizations, mission
{ 5x — prlorltles
1.25% —
Relative Size,
Cost Ranges
0.8x —
06Tx —
05x —
Valuation Foundations Development Hardware
0.25x — Commitment Commitment Commitment Critical Design Accepted
Review Review Review Revlew System
A A A A A A
Exploration Valuation Foundations Detailed Development
Design and Test

10/29/2015

Phases and Milestones

10

eenaee QV@ragile and Underagile Methods

Research Center

* Overagile Methods: Easiest First
— Treat security, safety, scalability as user stories
— Defer their development to late releases

— Doing the easy parts will make the hard parts easier
* Maybe for puzzles, but not for complex software-intensive systems

 Underagile Methods: Apply rigorous methods to all system parts
— May need for some parts: security-critical, safety-critical

— But not for others: user, evolving external-system interfaces

e Particularly hard to change if included in contracts
— Two systems of systems: 141 average workdays vs. 48

e Important to modularize around sources of change
— Avoids ripple effects on other system parts

10/29/2015 11

smeaawene. Example of NFR Value Conflicts: Security IPT

e Single-agent key distribution; single data copy
— Reliability: single points of failure

Elaborate multilayer defense
— Performance: 50% overhead; real-time deadline problems

Elaborate authentication
— Usability: delays, delegation problems; GUI complexity

e Everything at highest level
— Modifiability: overly complex changes, recertification

10/29/2015 12

L]
SYSTEMS ENGINEERING Outllne

Research Center

e Critical nature of non-functional requirements (NFRs)

— Also called System Qualities, ilities

— Major source of project overruns, failures

— Poorly defined, understood

— Underemphasized in project management
 Example sources of project overruns

— The conspiracy of optimism and its effect on SE

— Inflexible requirements

— Overagile and Underagile Methods

— Optimizing some NFRs at the expense of others: Security

=) Chaotic nature of NFR definition, understanding
 DoD-SERC NFR definition, practices efforts

* Principles for avoiding the sources of project overruns

DoD-SERC NFR Definition, Practices Efforts:

NFR Ontology, Set-based requirements and design

 Modified version of IDEF5 ontology framework
— Classes, Subclasses, and Individuals
— Referents, States, Processes, and Relations

* Top classes cover stakeholder value propositions
— Mission Effectiveness, Resource Utilization, Dependability, Changeabiity

e Subclasses identify means for achieving higher-class ends
— Means-ends one-to-many for top classes
— ldeally mutually exclusive and exhaustive, but some exceptions
— Many-to-many for lower-level subclasses

* Referents, States, Processes, Relations cover NFR variation
e Referents: Sources of variation by stakeholder value context:
e States: Internal (beta-test); External (rural, temperate, sunny)
* Processes: Operational scenarios (normal vs. crisis; experts vs. novices)

e Relations: Impact of other SQs (security as above, synergies & conflicts)
10/29/2015 14

Set-Based NFRs Definition Convergence
RPV Surveillance Example

Phase 1
Desired
Phase 2
Effective Phase 3
ness
(pixels/
frame)
Acceptable
Accept Desired
able

Efficiency (E.g., frames/second)

Phase 1. Rough ConOps, Rqts, Solution Understanding
Phase 2. Improved ConOps, Rqts, Solution Understanding
Phase 3. Good ConOps, Rqts, Solution Understanding

10/29/2015 15

L]
SYSTEMS ENGINEERING Outllne

Research Center

e Critical nature of non-functional requirements (NFRs)
— Also called System Qualities, ilities
— Major source of project overruns, failures
— Poorly defined, understood
— Underemphasized in project management
 Example sources of project overruns
— The conspiracy of optimism and its effect on SE
— Inflexible requirements
— Overagile and Underagile Methods
— Optimizing some NFRs at the expense of others: Security
— Chaotic nature of NFR definition, understanding
 DoD-SERC NFR definition, practices efforts

=) Principles for avoiding the sources of project overruns

wrevs aneenne PRINCIPIES for Avoiding Project Overrun Sources

Research Center

e Stakeholder Value-Based Guidance
— ldentify, involve missing success-critical stakeholders
— Bank of America Master Net example
* Incremental Commitment and Accountability
— Set-Based Requirements and Design: Build in Tradespace
e Concurrent Multi-Discipline Engineering
— Complement NFR IPTs with NFRs IPT
e Evidence and Risk-Based Decisions

$100M | .
Required
Architecture:
ss50M T Custom; many
cache processors Original
Original Cost Architecture:
OrigtagkSpec | Modified Prototyping
! ! Client-Server |
1 2 3 4 5
Response Time (sec)

10/29/2015 17

18

ICSM Principles Counterexample:
Bank of America Master Net

Users Acquirers
POS
Many features POVRP Mission costfeffectiveness
PDVPD : e
Changeable requirements Limited development budget, schedule
PDVPD

Applications compatibility PDVPP Government standards compliance
High levels of service — ‘ ™ Political correctness
.. . PCIPC PCIPC

Voice in acquisition Development visibility and control

. - “ \ Y1 .
Flexible contract ‘ Rigorous contact
PR/PD
Early availability l
PCIPC
Maintainers PRIPD Developers
Ease of transition i A ‘ \ Flexible contract
PFDPD -
Ease of maintenance _ . Ease of meeting budget and schedule
POIPD I
Applications compatibility ' . ,‘ Stable requirements
SIPC
Voice in acquisition [2igs b Freedom of choice: process
SIPC .
PC: Process Freedom of choice: team
PD: Product — d 3 Fery
PP: Property Freedom of choice: COTS/reuse
5: Success

Types of Decision Reviews

e Schedule-based commitment reviews (plan-driven)
— We'll release the RFP on April 1 based on the schedule in the plan
— $70M overrun to produce overperforming system

 Event-based commitment reviews (artifact-driven)
— The design will be done in 15 months, so we’ll have the review then
— Responsive design found to be unaffordable 15 months later

e Evidence-based commitment reviews (risk-driven)

— Evidence: affordable COTS-based system can’t satisfy 1-second
requirement

e Custom solution roughly 3x more expensive

— Need to reconsider 1-second requirement

19

Evidence-Based Decision Result

Research Center

Attempt to validate 1-second response time

« Commercial system benchmarking and architecture
analysis: needs expensive custom solution

* Prototype: 4-second response time OK 90% of the time

 Negotiate response time ranges
e« 2seconds desirable
« 4 seconds acceptable with some 2-second special cases

« Benchmark commercial system add-ons to validate
their feasibility

 Present solution and feasibility evidence at evidence-
based decision review

 Result: Acceptable solution with minimal delay

10/29/2015 20

o,
......

SYSTEMS ENGINEERING
Aesearch Center

10/29/2015

Backup charts

21

Flexibility

Dependability

Accreditation

Agile methods assurance

Encryption

Many options
Multi-demain modifiability
Multi-level security

Self adaptive defects

User programmability

Dependability

Mission Effectivenss

Resource Utilization

Physical Capahbility

Cyber Capability

Interoperability

Mission Effectivenss

Autonomy vs. Usability
Modularity slowdowns

Multi-domain architecture
interoperability conflicts
Wersatility vs. Usability

Doamain archite
domain

ing wit hin
Modularity
Self Adaptive

Smart monitoning

Spare Capacity

Use software vs. hardware

Anti-tamper

Armor vi, Weight

Easiest-first development
Redundancy

Scalability

Spare Capacity

Usability ws. Security

Resource Utilization

Agile Methods scalability
Assertion checking
overhead

Fixed cost contracts

Modularity

BMulti-domain architecture

interoperability conflicts
Spare capacity

Tight coupling
Use software vs. hardware

Accreditation
Acquisition Cost

Certification

Easiest-first development
Fallbacks

Multi-dornain architecture
imteroperability conflicts
Redundancy

Spare Capacity, tools costs
Usability ws. Cost savings

adaptability

Many options
Service oriented

Spare capacity

User programmability

Versatility

Accredit

FMEA

Multi-level security

Survivability
Spane capacity

Agile methods scalability
Cost of automated alds

Many options
Multi-damain architécture
interoperability conflicts

Spare capacity

Usabrility vs. Cost savings

Versatility

Adaptability

Agile methods
Automated I/ O validation
Loose coupling for
sustainability

Product line architectures

Staffing. Empowering

Automated aids
Automated |0 validation

Domain architecting within
domain

Product line architectures
staffing. Empowering
Total Ownership Cost
Value prioritizing

Adaptability

Spare capacity

Fallbacks

Lightweight agility

Redundancy

Spare capacity
walue prioritizing

Adaptability

Spang Capacity

Fallbacks

Redundancy

Value prioritizing

Adaptability

Loose coupling

modularity
Product line architectures

Service-oriented
CONNeCtons

Use software ws. Hardware
ility
Assertion Checking
Domaln architecting within

FOErarmmd

domain

Service oriented

Physical Capability

Multi-domain architecture

interoperability conflicts
Ower-optimizing

Tight ccupllng
Use software vs. hardware

Lightweight agility

mMulti-domain architecture
interoperability conflicts
Crver-optimizing

Multi-domain architecture

interoparability conflicts

Cver-optimizing

Automated aids
Domain architect ing within
domain

Staffing, Empowering

Value prioritizing

Cost of automated aids

Multi-domain architecture
interoperability conflicts
Crver-optimizing

Automated aids
Domain architecting within
domain

Staffing, Empowering

Walue prioritizing

Automated aids
Domain architecting within
domain

Statfing, Emposering

Value prioritizing

Automated aids
Domain a:rh.te{tlng within
domain

Staffing, Empowering

Cyber Capability

Agile Methods scalability

Multi-demain architecture
interoperability conflicts
Over-optimizing

Tight coupling

Use software vs. hardware

Multi-dornain architecture
imteroperability conflicts

Crver-optimizing

Multi-domain architecture
interoperability conflicts

{_‘wer.o;vt.mulng

Cost of automated aids

Multi-domain architecture
interoperability conflicts
Over-optimizing

Automated aids

Dormain architecting within
domain

sStaffing, Empowering

WValue priofitizing

Over-optimizing

Physical architecture or
cyber architecture

Automated alds

Domain architecting within
domain

staffing. Empowering

Value prioritizing

Automated aids

Dormain architecting within
domain

Rework cost savings

staffing, Empowering

Interoperathiliby

Multi-domain architecture
interoperability cor

Y3qrigrogrammed

interoperability

Encryption interoperability

Multi-domain architectura

interoperability conflicts

Multi-domain architecture
interoperability conflicts

Assertion checking

Coagt, duration of added

connectors

Clver.g;tlmlzlns

Tight vs. Loose coupling

Automated aids

Staff ing. Empower ing

Value prioritizing

Reduced speed of Assertion

checking

Reduced speed of
connectors, standards
compliance

Tight vs. Leose coupling

Automated aids

Domain architecting within
domain

Automated aids

Domain architecting within
domain

Security

Security

Reliability

Non-redundancy (For Security)
Redundancy (For Reliability)

Maintainability

Accessiility
Compartmentalization
Encryption
Recertification

Armor
Recertification

Reliability Maintainability
Confidentiality, Integrity, Avalability Certification
Assurance Cases Diagnosability
Certification Integrity, Avalability
Failure Modes and Effects Analysis Repairability
Fault Tree Analysis Smart Monitoring
Recertification Spare Capacity

Accessibility
Certification
Diagnosability
Repairability
smart Monitoring

Spare Capacity

	Avoiding Overruns in the Specification of Non-Functional Requirements���Barry Boehm, USC���NDIA SE Conference 2015 �October 29, 2015
	Outline
	Critical Nature of NFRs�Major source of DoD, other system overruns
	Example of Current Practice
	Proliferation of Definitions: Resilience
	Outline
	The Conspiracy of Optimism �Take the lower branch of the Cone of Uncertainty�
	Added Cost of Minimal Software SysE�Based on COCOMO II calibration data
	How Much Architecting is Enough?
	 Inflexible Requirements: Dual Cones of Uncertainty�– Obsolete large command and control system
	Overagile and Underagile Methods
	Example of NFR Value Conflicts: Security IPT
	Outline
	DoD-SERC NFR Definition, Practices Efforts:�NFR Ontology, Set-based requirements and design �
	Set-Based NFRs Definition Convergence�RPV Surveillance Example
	Outline
	Principles for Avoiding Project Overrun Sources �
	Slide Number 18
	Types of Decision Reviews
	Evidence-Based Decision Result
	Backup charts
	Slide Number 22
	Slide Number 23

