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=) Critical nature of non-functional requirements (NFRs)

— Also called System Qualities, ilities

— Major source of project overruns, failures

— Poorly defined, understood

— Underemphasized in project management

 Example sources of project overruns

— The conspiracy of optimism and its effect on SE

— Inflexible requirements

— Overagile and Underagile Methods

— Optimizing some NFRs at the expense of others: Security

— Chaotic nature of NFR definition, understanding
 DoD-SERC NFR definition, practices efforts

* Principles for avoiding the sources of project overruns



Critical Nature of NFRs

Major source of DoD, other system overruns
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* NFRs have systemwide impact
— System elements generally just have local impact
 NFRs often exhibit asymptotic behavior
— Watch out for the knee of the curve
e Best architecture is a discontinuous function of NFR level
— “Build it quickly, tune or fix it later” highly risky
— Large system example below

$100M |
Required
Architecture:
__ | Custom; many
$50M cache processors
1 Original
Original Cost Architecture:
Origtagr Spec | Modified Agter |
| | CIHCTTOCT V] Prbtotyplng |
1 2 3 4
Response Time (sec)
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Example of Current Practice
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e “The system shall have a Mean Time Between Failures of
10,000 hours”

e What is a “failure?”

— 10,000 hours on liveness

— But several dropped or garbled messages per hour?
e What is the operational context?

— Base operations? Field operations? Conflict operations?
 Most management practices focused on functions

— Requirements, design reviews; traceability matrices; work
breakdown structures; data item descriptions; earned value
management

e What are the effects of or on other SQs?
— Cost, schedule, performance, maintainability?
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 Wikipedia Resilience variants: Climate, Ecology, Energy Development,
Engineering and Construction, Network, Organizational, Psychological, Soil

 Ecology and Society Organization Resilience variants: Original-ecological,
Extended-ecological, Walker et al. list, Folke et al. list; Systemic-heuristic,
Operational, Sociological, Ecological-economic, Social-ecological system,
Metaphoric, Sustainabilty-related

* Variants in resilience outcomes

— Returning to original state; Restoring or improving original state;
Maintaining same relationships among state variables; Maintaining
desired services; Maintaining an acceptable level of service; Retaining
essentially the same function, structure, and feedbacks; Absorbing
disturbances; Coping with disturbances; Self-organizing; Learning and
adaptation; Creating lasting value

— Source of serious cross-discipline collaboration problems
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* Principles for avoiding the sources of project overruns



Relative Size Range

The Conspiracy of Optimism
Take the lower branch of the Cone of Uncertainty
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Added Cost of Minimal Software SysE
Based on COCOMO Il calibration data
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Percent of Time Added to Overall Schedule
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How Much Architecting is Enough?

Sweet Spot

0 10 20 30 40 50 60

Percent of Time Added for Architecture and
Risk Resolution

Percent of Project Schedule Devoted to
Initial Architecture and Risk Resolution

Added Schedule Devoted to Rework
(COCOMO Il RESL factor)

Total % Added Schedule

Sweet Spot Drivers:
Rapid Change: leftward

High Assurance: rightward



Inflexible Requirements: Dual Cones of Uncertainty
— Obsolete large command and control system
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Uncertainties, changes in
competition, technology,

Zx — organizations, mission
{ 5x — prlorltles
1.25% —
Relative Size,
Cost Ranges
0.8x —
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05x —
Valuation Foundations Development Hardware
0.25x — Commitment Commitment Commitment Critical Design Accepted
Review Review Review Revlew System
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Exploration Valuation Foundations Detailed Development
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* Overagile Methods: Easiest First
— Treat security, safety, scalability as user stories
— Defer their development to late releases

— Doing the easy parts will make the hard parts easier
* Maybe for puzzles, but not for complex software-intensive systems

 Underagile Methods: Apply rigorous methods to all system parts
— May need for some parts: security-critical, safety-critical

— But not for others: user, evolving external-system interfaces

e Particularly hard to change if included in contracts
— Two systems of systems: 141 average workdays vs. 48

e Important to modularize around sources of change
— Avoids ripple effects on other system parts
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smeaawene. Example of NFR Value Conflicts: Security IPT

e Single-agent key distribution; single data copy
— Reliability: single points of failure

Elaborate multilayer defense
— Performance: 50% overhead; real-time deadline problems

Elaborate authentication
— Usability: delays, delegation problems; GUI complexity

e Everything at highest level
— Modifiability: overly complex changes, recertification

10/29/2015 12
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e Critical nature of non-functional requirements (NFRs)

— Also called System Qualities, ilities

— Major source of project overruns, failures

— Poorly defined, understood
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 Example sources of project overruns

— The conspiracy of optimism and its effect on SE

— Inflexible requirements

— Overagile and Underagile Methods

— Optimizing some NFRs at the expense of others: Security

=) Chaotic nature of NFR definition, understanding
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* Principles for avoiding the sources of project overruns



DoD-SERC NFR Definition, Practices Efforts:

NFR Ontology, Set-based requirements and design

 Modified version of IDEF5 ontology framework
— Classes, Subclasses, and Individuals
— Referents, States, Processes, and Relations

* Top classes cover stakeholder value propositions
— Mission Effectiveness, Resource Utilization, Dependability, Changeabiity

e Subclasses identify means for achieving higher-class ends
— Means-ends one-to-many for top classes
— ldeally mutually exclusive and exhaustive, but some exceptions
— Many-to-many for lower-level subclasses

* Referents, States, Processes, Relations cover NFR variation
e Referents: Sources of variation by stakeholder value context:
e States: Internal (beta-test); External (rural, temperate, sunny)
* Processes: Operational scenarios (normal vs. crisis; experts vs. novices)

e Relations: Impact of other SQs (security as above, synergies & conflicts)
10/29/2015 14



Set-Based NFRs Definition Convergence
RPV Surveillance Example

Phase 1
Desired
Phase 2
Effective Phase 3
ness
(pixels/
frame)
Acceptable
Accept Desired
able

Efficiency (E.g., frames/second)

Phase 1. Rough ConOps, Rqts, Solution Understanding
Phase 2. Improved ConOps, Rqts, Solution Understanding
Phase 3. Good ConOps, Rqts, Solution Understanding
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e Stakeholder Value-Based Guidance
— ldentify, involve missing success-critical stakeholders
— Bank of America Master Net example
* Incremental Commitment and Accountability
— Set-Based Requirements and Design: Build in Tradespace
e Concurrent Multi-Discipline Engineering
— Complement NFR IPTs with NFRs IPT
e Evidence and Risk-Based Decisions

$100M | .
Required
Architecture:
ss50M T Custom; many
cache processors Original
Original Cost Architecture:
OrigtagkSpec | Modified Prototyping
! ! Client-Server |
1 2 3 4 5
Response Time (sec)
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ICSM Principles Counterexample:
Bank of America Master Net

Users Acquirers
POS
Many features POVRP Mission costfeffectiveness
PDVPD : e
Changeable requirements Limited development budget, schedule
PDVPD

Applications compatibility PDVPP Government standards compliance
High levels of service — ‘ ™ Political correctness
.. . PCIPC PCIPC

Voice in acquisition Development visibility and control

. - “ \ Y1 .
Flexible contract ‘ Rigorous contact
PR/PD
Early availability l
PCIPC
Maintainers PRIPD Developers
Ease of transition i A ‘ \ Flexible contract
PFDPD -
Ease of maintenance _ . Ease of meeting budget and schedule
POIPD I
Applications compatibility ' . ,‘ Stable requirements
SIPC
Voice in acquisition [ 2igs b Freedom of choice: process
SIPC .
PC: Process Freedom of choice: team
PD: Product — d 3 Fery
PP: Property Freedom of choice: COTS/reuse
5:  Success



Types of Decision Reviews

e Schedule-based commitment reviews (plan-driven)
— We'll release the RFP on April 1 based on the schedule in the plan
— $70M overrun to produce overperforming system

 Event-based commitment reviews (artifact-driven)
— The design will be done in 15 months, so we’ll have the review then
— Responsive design found to be unaffordable 15 months later

e Evidence-based commitment reviews (risk-driven)

— Evidence: affordable COTS-based system can’t satisfy 1-second
requirement

e Custom solution roughly 3x more expensive

— Need to reconsider 1-second requirement

19



Evidence-Based Decision Result
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Attempt to validate 1-second response time

« Commercial system benchmarking and architecture
analysis: needs expensive custom solution

* Prototype: 4-second response time OK 90% of the time

 Negotiate response time ranges
e« 2seconds desirable
« 4 seconds acceptable with some 2-second special cases

« Benchmark commercial system add-ons to validate
their feasibility

 Present solution and feasibility evidence at evidence-
based decision review

 Result: Acceptable solution with minimal delay

10/29/2015 20
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