
Developing an
Effective Software Product Architecture

Using
Systematic Software Engineering Practices

Richard F. Schmidt

NDIA 18th Annual Systems Engineering Conference 29 October 2015 | Presentation 17964 2

Today’s Software Industry Challenges

 Software Industry has an appalling history of
success
– Standish Group’s Chaos reports:

» ~ 30% success rate
» SUCCESSFUL Programs averaged:

• 70% schedule overrun
• 50% cost overrun
• Only 70% of features delivered

 Cause(?)
– No emphasis on Software Design
– Focus on “PROTOTYPING” (Cowboy coding, Agile, etc…)
– Significant amount of “Rework” to fix design flaws

(because there is no coherent design)

Today’s presentation will address the application of Software Engineering Practices

with an emphasis on DESIGN SYNTHESIS

NDIA 18th Annual Systems Engineering Conference 29 October 2015 | Presentation 17964 3

Objectives of Software Engineering
(Personal Perspective)

 Develop a complete, effective and sustainable software product
ARCHITECTURE which:
– Embodies the data-processing characteristics

» Must address security features which protect Data Assets and System Vulnerabilities
– Sufficiently detailed to permit efficient coding, Test & Evaluation, and

Sustainment
» Hand-off the design specifications to ”Implementation Team” (Coders)

• Software Technical Data Package
» Provide a complete “design-to” Software Bill-of-material (SBOM)
» Provides the software integration strategy & derived “Integrating Components”

– Satisfies the Customer’s & Stakeholder’s Total Ownership cost objectives
» Development success Rate Improvement (On-Time, On-Schedule, Full Functionality)
» Structural Integrity to endure future modification & enhancement

Apply Proven Systems Engineering Practices
To Software Products

NDIA 18th Annual Systems Engineering Conference 29 October 2015 | Presentation 17964 4

Software Engineering Practices
(Adapted from IEEE-1220)

 Software Requirements Analysis
1. Capture & Model Data-processing Transactions (Behaviors)
2. Develop Test Cases
3. Generate Requirement Specifications

 Functional Analysis & Allocation
4. Decompose Complex Behaviors (Functions)
5. Combine and Assimilate Common Functions
6. Generate Functional Specifications (Preliminary Design Document)

 Software Design Synthesis
7. Identify Components
8. Derive Structural “Features” necessary to define each Component
9. Establish Component Integration Strategy

» Derived Requirements for additional “Integrating” Components/Features
10. Generate Detailed Design Documentation

NDIA 18th Annual Systems Engineering Conference 29 October 2015 | Presentation 17964 5

Software Engineering practices impose rigor and discipline to
Software Development

Software Architecture Structural Pillars
(Industry ratings represent my personal perspective)

Data Structure

Data Processing
Transactions

GUI
Structure

Modular
Structure

 Software Requirements Analysis

 Functional Analysis

 Software Design Synthesis

NDIA 18th Annual Systems Engineering Conference 29 October 2015 | Presentation 17964 6

Software Engineering practices MUST adequately address
the COMPLEXITY of modern programming languages

Software Architecture Structural Pillars

Data Structure

Data Processing
Transactions

GUI
Structure

Module
Structure

Behavioral Models
• Function Flow
• Data Flow
• Control Flow

Object-Orientation
• Class Definition
• Collections
• Compound Data Structures
• Data Search Efficiencies

Event-Driven Interface
• Forms
• Dialogs
• GUI Controls
• Run-time Services

Modularity
• Separation of

Concerns
• Sw-Sw Interface

Specifications
• Reduce Complexity
• Reduce lifecycle

costs

NDIA 18th Annual Systems Engineering Conference 29 October 2015 | Presentation 17964 7

Makes Software Development more predicable & dependable

Software Architecture Structural Pillars

Establishes a balanced,
comprehensive design solution to:

1. Improve product quality,
2. Reduce product complexity,
3. Minimize implementation risks
4. Eliminate scrap & rework
5. Increase adaptability during sustainment

GOAL:
• On Time
• Within Budget
• Full Functionality

Data Structure

Data Processing
Transactions

GUI
Structure

Module
Structure

•Data Persistence Efficiency
•Data Access Efficiency

•Performance
•Capacity (through-put)

•Human/Systems Interoperability
•Ease-of-use (Learning Curve)

•Structural Integrity
•Structural Resilience
•Structural Simplicity

Software Architecture Artifacts (Specifications & Design Documentation)

NDIA 18th Annual Systems Engineering Conference 29 October 2015 | Presentation 17964 8

Software Engineering Practices
(Adapted from IEEE-1220)

SOFTWARE REQUIREMENTS ANALYSIS
1. Capture & Model Data-processing Transactions (Behaviors)

– Behavioral Models of Software Interactions with External Sources
– Data Flows, Control Flows, Function Flows (21 Variations)
– Data Specification

» (12 standard variations/User Defined Data Types/Classes)
 Including Security Classifications (PII, Classified, Secret,

 Top Secret, TS/SCI…)
– Performance (Execution Timing)
– Resource Utilization
– External Interactions (User, DBMS, Computing Environment, External Systems)
– Derived Security Procedures/Features (Data Bases, Data Files & Computing Resources)

2. Develop Test Cases
– Verify Data-processing Transaction Models

3. Generate Requirement Specifications
– Software Requirement Specification
– Interface Requirement Specification(s)
– Test Procedures
– Preliminary Data Dictionary

NDIA 18th Annual Systems Engineering Conference 29 October 2015 | Presentation 17964 9

Design Security In

 Enable security-by-design for software assets:
– Database Records, Files & Computing Resources

 Specify derived Software Asset Security features

NDIA 18th Annual Systems Engineering Conference 29 October 2015 | Presentation 17964 10

Software Engineering Practices
Overview

FUNCTIONAL ANALYSIS & ALLOCATION
4. Decompose Complex Behaviors (Functions)

– More detailed behavior models reflecting internal software
data processing procedures

5. Combine and Assimilate Common Functions
– Combined & sanitize specification(s) to resolve conflicts,

overlaps and inconsistencies
– Reduce Complexity
– Enforce Modularity

6. Generate Software Functional Specifications
(Preliminary Design Document)

NDIA 18th Annual Systems Engineering Conference 29 October 2015 | Presentation 17964 11

Software Engineering Practices
Overview

SOFTWARE DESIGN SYNTHESIS
7. Identify Structural Components - 3 Types:

1) Forms & Dialogs (GUI Structure)
2) Classes & Collections (Data Structure)
3) Modules (Module Structure)

8. Derive Design Details necessary to characterize
each component

9. Establish the Software Integration Strategy
– Integration Tiers
– Derived Integration Components/Features

» (not identifiable during Requirements & Functional Analysis)
10. Generate Detailed Design Documentation

– Component “design-to” specifications
– Integration Plan
– Software Bill-of-Materiel (S-BOM)
– Detailed Data Dictionary

NDIA 18th Annual Systems Engineering Conference 29 October 2015 | Presentation 17964 12

Software Design Synthesis Framework
 For each Data-Processing Scenario &

Associated Behaviors:
1. Identify the Structural Components needed to enable

the behaviors
» Allocate one or more Behaviors to each Component

2. Identify & Define the design elements of each
Component (based on type)

» Identify the Routine Interface(s)
» Design Elements perform sub-functions (Software Units) which enable the desired Behavior(s)

3. Establish the Software Integration Strategy
» Create the Integration Components/Subcomponents needed to facilitate the integration of lower-tier

components

Form/Dialog
• GUI Controls
• Properties
• Routines!

• EventHandlers*

Class/Collection
• Properties
• Routines!

Module
• Properties
• Routines!

• EventHandlers*

! Specification of Software Interface (DataExchange) * Special type of routine associated with a GUI Controls & User-defined Events

GUI Structure Data Structure Module Structure

NDIA 18th Annual Systems Engineering Conference 29 October 2015 | Presentation 17964 13

Software Integration Hierarchy
 Top-level Component of type

“Product”
– Typically a Software Configuration Item

» (CSCI - Uppermost tier)
 Components identified from Design

Synthesis
– Type “Base”
– Represent the Lowest-level Tier of

Structure (tier 0)
– Resulting from Design Synthesis

 Integration Tiers provide
workplace to identify
“Integration” Components

– Assemble and integrate multiple
lower-tier components

– Identify newly derived “features”
needed to support integration

– Enforce the Integrated Data-processing
Behaviors

Comp X
Base

Comp Y
Base

Comp Z
Base

Comp AA
Base

Comp BB
Base Tier 0

Comp 1
Integration

Comp 22
Derived

Comp 11
Derived

Tier 1

Comp 0
Product

Comp 2
Integration

Tier 2

NDIA 18th Annual Systems Engineering Conference 29 October 2015 | Presentation 17964 14

Summary

 Software Engineering emphasizes “Design” before “Coding”
– Specifies a complete Architectural Representation (SBOM)
– Minimizes software life-cycle costs

» Reduce rework during initial development
» Establishes a tangible architecture which enables change control & enhancements

– Enhances the effectiveness of other methodologies (e.g., AGILE)
– Prototyping to reduce RISKS and explore design solutions

 Application of “Systems Engineering” practices ARE
ESSENTIAL to Software Development/Acquisition Success
– Central to achieving the “vision” of automated software generation from

design
 Methodology has been automated (Prototype)

– Desire a partnership to demonstrate Methodology & Tool effectiveness
Demos available upon request after session

NDIA 18th Annual Systems Engineering Conference 29 October 2015 | Presentation 17964 15

BACKUPS

NDIA 18th Annual Systems Engineering Conference 29 October 2015 | Presentation 17964 16

Current State of the Industry

CHAOS MANIFESTO 2013
The Standish Group

CHAOS Reports Summary
 1994 1996 1998 2000 2002 2004 2006 2008
Successful 16% 27% 26% 28% 34% 29% 35% 32%
Challenged 53% 33% 46% 49% 51% 53% 46% 44%
 Failed 31% 40% 28% 23% 15% 18% 19% 24%

Agile Manifesto
2001

	Developing an �Effective Software Product Architecture �Using �Systematic Software Engineering Practices
	Today’s Software Industry Challenges
	Objectives of Software Engineering�(Personal Perspective)
	Software Engineering Practices�(Adapted from IEEE-1220)
	Software Architecture Structural Pillars�(Industry ratings represent my personal perspective)
	Software Architecture Structural Pillars
	Software Architecture Structural Pillars
	Software Engineering Practices�(Adapted from IEEE-1220)
	Design Security In
	Software Engineering Practices Overview
	Software Engineering Practices Overview
	Software Design Synthesis Framework
	Software Integration Hierarchy
	Summary
	Slide Number 15
	Current State of the Industry

