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Today’s Software Industry Challenges 

 Software Industry has an appalling history of 
success 
– Standish Group’s Chaos reports: 

» ~ 30% success rate 
» SUCCESSFUL Programs averaged: 

• 70% schedule overrun 
• 50% cost overrun 
• Only 70% of features delivered 

 Cause(?) 
– No emphasis on Software Design 
– Focus on “PROTOTYPING” (Cowboy coding, Agile, etc…) 
– Significant amount of “Rework” to fix design flaws         

(because there is no coherent design) 
 
 

 
Today’s presentation will address the application of Software Engineering Practices  

with an emphasis on DESIGN SYNTHESIS 
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Objectives of Software Engineering 
(Personal Perspective) 

 Develop a complete, effective and sustainable software product 
ARCHITECTURE which: 
– Embodies the data-processing characteristics  

» Must address security features which protect Data Assets and System Vulnerabilities 
– Sufficiently detailed to permit efficient coding, Test & Evaluation, and 

Sustainment 
» Hand-off the design specifications to ”Implementation Team” (Coders) 

• Software Technical Data Package 
» Provide a complete “design-to” Software Bill-of-material (SBOM) 
» Provides the software integration strategy & derived “Integrating Components” 

– Satisfies the Customer’s & Stakeholder’s Total Ownership cost objectives 
» Development success Rate Improvement (On-Time, On-Schedule, Full Functionality) 
» Structural Integrity to endure future modification & enhancement 

Apply Proven Systems Engineering Practices  
To Software Products 
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Software Engineering Practices 
(Adapted from IEEE-1220) 

 Software Requirements Analysis  
1. Capture & Model Data-processing Transactions (Behaviors) 
2. Develop Test Cases 
3. Generate Requirement Specifications 

 Functional Analysis & Allocation 
4. Decompose Complex Behaviors (Functions) 
5. Combine and Assimilate Common Functions 
6. Generate Functional Specifications (Preliminary Design Document) 

 Software Design Synthesis 
7. Identify Components  
8. Derive Structural “Features” necessary to define each Component 
9. Establish Component Integration Strategy 

» Derived Requirements for additional “Integrating” Components/Features 
10. Generate Detailed Design Documentation 
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Software Engineering practices impose rigor and discipline to  
Software Development 

Software Architecture Structural Pillars 
(Industry ratings represent my personal perspective) 

Data Structure 

Data Processing 
Transactions 

GUI 
Structure 

Modular 
Structure 

 Software Requirements Analysis  

 Functional Analysis  

 Software Design Synthesis  
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Software Engineering practices MUST adequately address  
the COMPLEXITY of modern programming languages 

Software Architecture Structural Pillars 

Data Structure 

Data Processing 
Transactions 

GUI 
Structure 

Module 
Structure 

Behavioral Models 
• Function Flow 
• Data Flow 
• Control Flow 

Object-Orientation 
• Class Definition 
• Collections 
• Compound Data Structures 
• Data Search Efficiencies 

Event-Driven Interface 
• Forms 
• Dialogs 
• GUI Controls 
• Run-time Services 

Modularity 
• Separation of 

Concerns 
• Sw-Sw Interface  

Specifications 
• Reduce Complexity 
• Reduce lifecycle 

costs 
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Makes Software Development more predicable & dependable 

Software Architecture Structural Pillars 

Establishes a balanced, 
comprehensive design solution to: 

1. Improve product quality, 
2. Reduce product complexity, 
3. Minimize implementation risks 
4. Eliminate scrap & rework 
5. Increase adaptability during sustainment 

GOAL: 
• On Time 
• Within Budget 
• Full Functionality 

Data Structure 

Data Processing 
Transactions 

GUI 
Structure 

Module 
Structure 

•Data Persistence Efficiency 
•Data Access Efficiency 

•Performance  
•Capacity (through-put) 

•Human/Systems Interoperability 
•Ease-of-use (Learning Curve) 

•Structural Integrity 
•Structural Resilience 
•Structural Simplicity 

Software Architecture Artifacts (Specifications & Design Documentation) 



NDIA 18th Annual Systems Engineering Conference   29 October 2015  |  Presentation 17964 8 

Software Engineering Practices 
(Adapted from IEEE-1220) 

SOFTWARE REQUIREMENTS ANALYSIS  
1. Capture & Model Data-processing Transactions (Behaviors) 

– Behavioral Models of Software Interactions with External Sources 
– Data Flows, Control Flows, Function Flows (21 Variations) 
– Data Specification  

» (12 standard variations/User Defined Data Types/Classes)  
 Including Security Classifications (PII, Classified, Secret,    

 Top Secret, TS/SCI…) 
– Performance (Execution Timing) 
– Resource Utilization 
– External Interactions (User, DBMS, Computing Environment, External Systems) 
– Derived Security Procedures/Features (Data Bases, Data Files & Computing Resources) 

2. Develop Test Cases 
– Verify Data-processing Transaction Models 

3. Generate Requirement Specifications 
– Software Requirement Specification 
– Interface Requirement Specification(s) 
– Test Procedures 
– Preliminary Data Dictionary 
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Design Security In 

 Enable security-by-design for software assets:   
– Database Records, Files & Computing Resources 

 Specify derived Software Asset Security features 
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Software Engineering Practices 
Overview 

FUNCTIONAL ANALYSIS & ALLOCATION 
4. Decompose Complex Behaviors (Functions) 

– More detailed behavior models reflecting internal software 
data processing procedures 

5. Combine and Assimilate Common Functions 
– Combined & sanitize specification(s) to resolve conflicts, 

overlaps and inconsistencies 
– Reduce Complexity  
– Enforce Modularity 

6. Generate Software Functional Specifications 
(Preliminary Design Document) 
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Software Engineering Practices 
Overview 

SOFTWARE DESIGN SYNTHESIS 
7. Identify Structural Components - 3 Types:   

1) Forms & Dialogs (GUI Structure) 
2) Classes & Collections (Data Structure) 
3) Modules (Module Structure) 

8. Derive Design Details necessary to characterize 
each component 

9. Establish the Software Integration Strategy 
– Integration Tiers 
– Derived Integration Components/Features  

» (not identifiable during Requirements & Functional Analysis) 
10. Generate Detailed Design Documentation 

– Component “design-to” specifications 
– Integration Plan 
– Software Bill-of-Materiel (S-BOM) 
– Detailed Data Dictionary 
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Software Design Synthesis Framework 
 For each Data-Processing Scenario &                                                          

Associated Behaviors: 
1. Identify the Structural Components needed to enable                                                           

the behaviors 
» Allocate one or more Behaviors to each Component 

2. Identify & Define the design elements of each                                                                                             
Component (based on type) 

» Identify the Routine Interface(s) 
» Design Elements perform sub-functions (Software Units) which enable the desired Behavior(s) 
 

 
 
 
 
 

 
 

3. Establish the Software Integration Strategy 
» Create the Integration Components/Subcomponents needed to facilitate the integration of lower-tier 

components 

Form/Dialog 
• GUI Controls  
• Properties 
• Routines! 

• EventHandlers*  

Class/Collection 
• Properties 
• Routines! 

Module 
• Properties 
• Routines! 

• EventHandlers* 

! Specification of Software Interface (DataExchange)           * Special type of routine associated with a GUI Controls & User-defined Events 

GUI Structure Data Structure Module Structure 
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Software Integration Hierarchy 
 Top-level Component of type 

“Product”  
– Typically a Software Configuration Item  

» (CSCI  - Uppermost tier) 
 Components identified from Design 

Synthesis  
– Type “Base”  
– Represent the Lowest-level Tier of 

Structure (tier 0) 
– Resulting from Design Synthesis 

 Integration Tiers provide    
workplace to identify      
“Integration” Components 

– Assemble and integrate multiple    
lower-tier components 

– Identify newly derived “features” 
needed to support integration 

– Enforce the Integrated Data-processing 
Behaviors 
 
 

Comp X 
Base 

Comp Y 
Base 

Comp Z 
Base 

Comp AA 
Base 

Comp BB 
Base Tier 0 

Comp 1 
Integration 

Comp 22 
Derived 

Comp 11 
Derived 

Tier 1 

Comp 0 
Product 

Comp 2 
Integration 

Tier 2 
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Summary 

 Software Engineering emphasizes “Design” before “Coding” 
– Specifies a complete Architectural Representation (SBOM) 
– Minimizes software life-cycle costs 

» Reduce rework during initial development  
» Establishes a tangible architecture which enables change control & enhancements 

– Enhances the effectiveness of other methodologies (e.g., AGILE) 
– Prototyping to reduce RISKS and explore design solutions 

 Application of “Systems Engineering” practices ARE 
ESSENTIAL to Software Development/Acquisition Success 
– Central to achieving the “vision” of automated software generation from 

design 
 Methodology has been automated (Prototype) 

– Desire a partnership to demonstrate Methodology & Tool effectiveness 
Demos available upon request after session 
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BACKUPS 
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Current State of the Industry 

CHAOS MANIFESTO 2013 
The Standish Group 

CHAOS Reports Summary  
 1994  1996  1998 2000 2002  2004 2006  2008  
Successful  16%  27%  26%  28%  34%  29%  35%  32%  
Challenged  53%  33% 46% 49% 51% 53% 46%  44% 
 Failed  31%  40%  28%  23%  15%  18%  19%  24%  

Agile Manifesto 
2001 
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