D R 🖊 P E R

Enhancing Capabilities and Reducing Workload in UAV Operations

Zahar Prasov NDIA Human Systems Conference February 09-10, 2016 Background

Solution Approach

Conclusions

Background

Conclusions

Challenges

High Operational Cost

DRAPER

Background

Workflow Analysis

Solution Approach

Conclusions

Ideal Scenario

Supervisory Control of Multiple UAVs

Pooled Resource Allocation

Enhanced Mission Capability

How to achieve the ideal scenario?

- Enhance effectiveness of single UAV (single crew) missions
- 2. Reduce operational cost
- 3. Multi-UAV operations

How to achieve the ideal scenario?

- Enhance effectiveness of single UAV (single crew) missions
- 2. Reduce operational cost
- 3. Multi-UAV operations

Solution Approach via Multi-Agent Autonomous Reusable Software (MAARS)

Conclusions

Workflow Analysis

DRAPER

Mission Stakeholders

Information Flow

9

The Mission Commander is **Overloaded!**

Primarily Voice-Based Coordination

Enhance Current Single Crew/UAV Operations

- Reduce Mission Commander Load:
- Waypoint navigation
 - \rightarrow high-level mission planning
- Voice-based coordination
 - \rightarrow digitally-assisted coordination

Background

Workflow Analysis

Solution Approach

Conclusions

... via MAARS

DRAPER

MAARS Architecture

Capabilities Developed in MAARS

- Adherence to geospatial constraints
 - Avoiding terrain
 - Maintaining communication
- Adherence to mission constraints
 - Ground-target following
 - Airspace management

Adherence to Geospatial Constraints

Line-of-Sight Avoidance Zone

Terrain Avoidance Zone

Adherence to Geospatial Constraints

Payload Interaction

DRAPER

Payload Interaction

Autonomy Visualization Interaction

Autonomy

Interaction

Airspace Management

Solution Approach

Conclusions

Airspace Management

Airspace Management

Resulting Workflow: Reduction in MC and Pilot Load

Combine MC/Pilot into One Role

DR **A** PER

Combine MC/Pilot into One Role

Solution Approach

Conclusions

Future Work

Enable Dynamic (real-time) Mission Planning

Enable Single Crew to Perform multi-UAV Operations

Conclusions

Acknowledgements

Contributors:

- Dr. Rahul Chipalkatty
- Matt Grammes
- Tim Gomeringer
- Arch Owen

Contact: Dr. Zahar Prasov Research Engineer Draper 617-258-1724 zprasov@draper.com Background

Solution Approach

Conclusions

Thank You!

Questions?

DRAPER