NAVAL SURFACE WARFARE CENTER · DAHLGREN DIVISION

Atmospheric Measurements in Propane and Liquid-Pool Fast Cook Off Fires

David Hubble

NSWCDD-PN-16-00300; Distribution Statement A: Approved for Public Release; distribution is unlimited

- Fast Cook-Off is a standard safety test required for all explosive ordnance
- Traditionally performed by immersing test item in a flame produced by a pool of burning liquid fuel

The Push for an Alternative Fuel

- One of the primary issues is the environmental impact of the test
 - Atmospheric emissions
 - Public relations
 - Soil contamination
- A propane burner has been developed to address these concerns
 - Obvious reduction in soot
 - Boiling point address soil contamination
 - Proving emissions reduction is more challenging

Testing was performed to quantify the emissions of equivalent propane and liquid-pool fires

Test Overview

Aerostat

Instrumentation

- Aerostat used to lift instrumentation package
 - 800' (240m) between instruments and aerostat
- Winch used to control altitude
- Line handlers position instrument in plume

Plume

NSWCDD-PN-16-00300; Distribution Statement A: Approved for Public Release; distribution is unlimited

Instrumentation

Analyte	Instrument/Method	Frequency
CO ₂	NDIR	Continuous
СО	Electrochemical cell	Continuous
PM _{2.5}	Impactor/Teflon filter/gravimetric	Batch
PM by size	TSI DustTrak DRX/8520	Continuous
PAHs	Quartz filter PUF/XAD-2/PUF	Batch
VOCs	SUMMA canister	Batch
Black carbon	Micro Aethalometer, AE51, prototype sensor	Continuous
Elemental carbon/ Organic	Ougarta filtar	Datah
carbon/Total Carbon	Quartz filter	Batch
Carbonyls	DNPH cartridge	Batch

Test Fire - Propane

- 12' Propane burner
- Liquid propane vaporized within burner tubes
- Injected as gas
 - 676 gas jets
 - consumes 13.5 gallons (51 L) of liquid propane per minute
- Burner has previously been calibrated and shown to meet heat flux and temperature requirements for testing*

^{*}Hubble et. al. "Development and Calibration of a Propane Fueled Fast Cook-off Burner," IMEMTS Rome, Italy, 2015

Test Fire – Liquid Pool Fire

- 12' (3.7m) square liquid pan
 - Same physical size as propane burner
- JP5 floated on water
 - Standard practice for FCO testing at NSWCDD
- 500 gallons (1900 L) used to give approximately 30 minute burn time
- Ignited using 10 gallons (40 L) of gasoline and two thermite grenades
 - Sampling was delayed 5 minutes after ignition which allowed all gasoline and thermite emissions to dissipate

Test Details

- 6 total tests performed: 3 liquid pool fires,
 3 propane fires
- Liquid pool fires
 - 500 gallons of JP5 each test
 - For tests 1 and 2, wind was 3-7 mph (1.5-3 m/s)
 and burns lasted approximately 26 minutes
 - Instruments were intermittently visible within the plume
 - Calm conditions for test 3, burn lasted 38 minutes
 - Easy to maintain instruments in plume
- Propane fires
 - Each fire burned for 25 minutes
 - Plume is transparent, depend on on transmitted
 CO₂ data to determine proper sensor positioning

Test Results - Carbon

- Both fires produced approximately the same amount of CO₂ per mass of fuel consumed
 - Expected due to similar carbon fractions, 82% in propane, 85% in JP5
- Carbon monoxide emissions reduced by 88%
 - 20 g/kg reduced to 2.4 g/kg
 - Propane burns more efficiently than JP5
 - Gaseous injection results in better mixing, more complete combustion

Pollutant	JP5	Propane
CO ₂ (g/kg Fuel consumed)	3,085 ± 7.0	3,003 ± 0.34
CO (g/kg Fuel consumed)	20 ± 4.4	2.4 ± 0.22
MCE (ratio)	0.990 ± 0.002	0.999 ± 0.0001

Test Results – Particulate Matter

- PM_{2.5} represents all suspended matter smaller than 2.5 microns
 - Primarily composed of unburned carbon (soot)
 - PMs represent the most visible form of pollution
 - These very small ($<2.5 \mu m$) particles can get deep into the lungs
 - Contribute to a number of health problems including asthma, lung cancer and cardiovascular disease

Test Results – Particulate Matter

- The propane burner produced 150 times less PM_{2.5}
 - 129 g/kg reduced to 0.89 g/kg
- Indication of burning efficiency, propane more completely combusts the carbon to CO₂

Test Results - Volatile Organic Compounds

- VOCs represent some of the most dangerous chemicals that result from burning fossil fuels
- These six VOCs are all on the EPA's Hazardous Air Pollutants (HAP) list
- These chemicals are all toxic or carcinogenic
- Reduction in emissions were drastic for all
 - 500x less Benzene
 - All reduced by at least81%

Conclusions

- Tests were performed to measure the emissions from liquid pool and propane fueled fast cook-off fires
- The results show large reductions in:
 - Carbon monoxide
 - Particulate matter (PM_{2.5}, soot)
 - Volatile Organic Compounds (VOCs)
- These results prove that the propane burner offers significant environmental advantages over liquid pool fires
- The Propane burner should be utilized for fast cook-off testing whenever possible

Acknowledgements

Funding provided by:

- The Environmental Security Technology Certification Program (ESTCP)
- The Insensitive Munitions Advanced Development (IMAD) Program

Special thanks to the Environmental Protection Agency for their assistance

Extra Material