
Steady Grip and Agile Footing
A Balanced Foundation for Automated System Testing

Integrated Defense System (IDS)
Peter Fontana
SVTAD Technical Staff

Copyright © 2016 Raytheon Company. All rights reserved.

March 2, 2016

NON-EXPORT-CONTROLLED TECHNICAL INFORMATION:
A tif t d t i d t t i l B i D t d /Artifacts determined to contain only Business Data and / or
Technical Information that is publicly available in accordance with
Raytheon policy 263-RP, External Communications and Public
Release of Company Information, and does not contain Export-Release of Company Information, and does not contain Export
Controlled Technical Information (including those initiated in
eTPCR) may be marked with the following:
“This document does not contain technology or technical
d t t ll d d ith th U S I t ti l T ffi idata controlled under either the U.S. International Traffic in
Arms Regulations or the U.S. Export Administration
Regulations.”

2

Raytheon

A technology and innovation leader specializing
in defense, civil government and cybersecurity

k t th h t th ldmarkets throughout the world.
– 2014 NET SALES: $23 BILLION
– 61,000 EMPLOYEES WORLDWIDE61,000 EMPLOYEES WORLDWIDE
– HEADQUARTERS: WALTHAM, MASSACHUSETTS

C5ISR ELECTRONIC WARFARE MISSILE DEFENSE

3/7/2016PRECISION WEAPONS TRAINING & SERVICES CYBER

Raytheon IDS SVTAD

 The System Validation, Test and
Analysis Directorate is responsible
for the integration, verification, and
validation of all Raytheon IDS y
products.
 Hundreds of staff from engineering

and the factory to those deployedand the factory to those deployed
globally in the field
 We are responsible for the upper

right of the system engineering “V”

TestForward

 To boost system quality and speed delivery, SVTAD is applying
Acceptance Test Driven Development (ATDD) including
– In-sprint collaboration of integration and test activities with developmentIn sprint collaboration of integration and test activities with development
– Automated system verification testing at the mission thread level
 This initiative, TestForward, is driven by the confluence of Raytheon’s

– Development of Agile practices
– Shift to mission thread-based testing
– The push to SI&T test automationThe push to SI&T test automation

Standard Approach Versus Adaptability

 Propagating TestForward/ATDD to dozens of active
programs calls out for a common approach

Refine and adopt a single engineering method based on– Refine and adopt a single engineering method based on
 Common management drivers
 Sound engineering values

P t ti i i l Proven automation principles
– Build training and other learning aids once and use

repeatedly
Deploy industry standard OTS automation technology– Deploy industry standard OTS automation technology

– Share skills and tools configurations across programs
– Build a basis of estimate and establish a template for

project planning and managementproject planning and management

Standard Approach Versus Adaptability

 BUT different programs can have very different needs
– Different types of systems requiring different test techniques
 GUI-based screen verification
 High volume complex data-based analysis
 Protocol-based behavioral sequence tracing

– System test interfaces vary
U l l d k b d i t User-level mouse and keyboard input

 External messaging
 Program-specific internal component interfaces
 Data capture and marshalingData capture and marshaling
 Information analysis
 “Real world” target and other physical entity simulation

– Legacy programs can have existing investments
 Unique test tools
 Large bodies of test scripts and data

Standard Approach Versus Adaptability

 There is a compelling need to both standardize and adapt
– Deploy a standard ATDD method that can integrate program-specific interfaces

and test techniquesq
– Build on a standard automation framework based on a common scripting

technology that can drive varying system interfaces through modular interfaces

Standard Approach Versus Adaptability

 Industry Standard Test Automation Framework
– Multi-layered, federated – plug in various interface Agents

Central Test Language and Implementation

 Map business-level Gherkin/Cucumber statements to Agent
level commands:

Agents – Modularity and Adaptability

 An Agent is a software component that interfaces to one aspect of the
System Under Test
– Provides services to the test procedure to stimulate the SUT, query for state p , q y

information and gather aspect-specific data
– Embodies reusable FOSS communication services (HTTP/REST) to provide

both location-independence and platform-independence

 This federated architecture - Cucumber procedures driving distributed
Agents - is a key enabler to achieving
– Flexible test and deployment topologies via Agent communications
– Platform Independence, decoupling test procedures from Agent implementation
– Decoupled interfaces - add/modify/reuse individual Agents independently

Agents – Modularity and Adaptability

 Technology adaptation is through the
Agents
– Adapt different point tools like TestPlant– Adapt different point tools, like TestPlant

eggPlant or HP UFT
– All agents conform to a common test script

interface standard
 Cucumber-based
 Robust
 Simple

– SUT interface with different systems in
different ways

AgentAgentAgent
Agent

Interface to a specific
Agent

Interface to a specific
Agent

Interface to a specificAgent
Interface to a specific

touch point for the system
under (internal API)

Agent
Interface to a specific

touch point for the system
under (Air Defense

operator)

Agent
Interface to a specific

touch point for the system
under (DDS msgs)

Interface to a specific
touch point for the system

under (eggPlant)

Interface to a specific
touch point for the system

under (VR-Forces)

Interface to a specific
touch point for the system
under (external analysis

tool)

Agents – Modularity and Adaptability

 Example Test Framework and Agent deployment:

Results

 How well does this approach work?
– Automation portability and reuse

Common system interfaces– Common system interfaces
– Unique system interfaces
– Legacy Automation
– Alternative point of contact technologies

Results – Automation Portability

 Gherkin/Cucumber portability
– Agent connectivity approach mitigated the need for native test automation –

only the far (server) half of the Agent is integrated with SUTonly the far (server) half of the Agent is integrated with SUT
– Cucumber has integrations for over a dozen languages/environments from

Java and C++ to Ruby and TCL.
 Gherkin scripts developed in Eclipse JDT Cucumber on Linux can connect to Gherkin scripts developed in Eclipse JDT Cucumber on Linux can connect to

legacy subsystems still implemented in Jovial on embedded processors
The automated test runs on the tester’s workstation
and calls the local Agent interface for VR Forcesand calls the local Agent interface for VR-Forces

The Agent handles the communications with theThe Agent handles the communications with the
actual SUT-side simulation server

Results – Automation Portability

 Agent portability
– Test-side Agents (clients) work from a common

architecture, platform and toolkit, p
 Built and run in test programming environment

(Eclipse JDT/Java, Visual Studio/C#)
 Use many FOSS components: REST, JSON

St f t Strong reuse from program to program
– SUT-side Agents require much more program-specific

adaptation
 Some don’t have FOSS HTTP/REST or JSON

available
 Some have limited or proprietary communications

available
 Some are complicated by security needs to limit or Some are complicated by security needs to limit or

eliminate testability software from tactical
deployments

Results – Automation Reuse

 Gherkin/Cucumber Scripting
– Some test steps exercise standard interfaces (Agents) in standard ways
 Given Health and Monitoring Logging started at Warning Given Health and Monitoring Logging started at Warning
level

 When Built In Test for Warm Start initiated
S t ifi i i i i t f– Some steps are program specific, exercising unique interfaces
 When I log in as Air Defense Operator at Console 4
 Then the Protected Zone Alerts are automatically
displayed

Results – Automation Reuse

 Actual Gherkin reuse is not considered significant
– Likely to be program specific even when using cross-program

interfaces/agents – “stream of consciousness”
– The Cucumber level of abstraction is where the programming work

happens
 Cucumber Step reuse is more significant

Simple modularization and parameterization– Simple modularization and parameterization
 Reduces cloning
 Supports binding multiple Gherkin steps to same Cucumber Step

Implementationp
– The Agent interface is where the complexity lies - common Agents boost

Cucumber reuse

Results – Common system interfaces

 The Agent interface approach encapsulates each unique
interface of a system to be testedinterface of a system to be tested
– DDS messaging
– GUI
– SNMP Device Control and StatusSNMP Device Control and Status
– Standardized system instrumentation data (track info, health, performance)
 Systems that share common interfaces and subsystems

also share Agentsa so s a e ge s
– Agent client and server code is reused
– Cucumber implementation of common Agent requests is carried over and

adapted

Results – Unique system interfaces

 The total cost of establishing test automation for a program can be
substantially driven by the need to build Agent interface software
– Many Systems have unique interface needs for SI&T
– Agents can be specific to a program
 Subsystem-specific API (Radar Data Reduction, Track Correlation, Network

Security)
 Data reduction Agent for unique data
 Command/query interface unique hardware interface

– Some programs are the first to automatically test a common interface, and have to
b ild itbuild it

Results – Legacy Automation

L t i ll ’t i d t bl d l t t Legacy programs typically aren’t using an adaptable, modular test
automation framework
– Many have scattered and ad-hoc automation

E id l t t d ft d i li ti t ti h– Even widely automated programs often used a simplistic automation approach
 Solve one program’s needs
 Often organically grown by “midnight hero” efforts

– Ongoing maintenance ECPs and Phase N+1 program awards can stretch rigid andOngoing maintenance, ECPs and Phase N+1 program awards can stretch rigid and
fragile automation

 Measured, careful steps forward
– Retrofit the Cucumber framework
– Encapsulate effective legacy automation with Agents
– Selective, to preserve existing capability
– Provide a growth path forward

Results – Alternative point of contact technologies

S i t f t t f th SUT i d b COTS th Some points of contact for the SUT are serviced by COTS or other
existing technologies:
– GUI: TestPlant’s eggPlant, or HP’s Unified Functional Testing

T t G ti MAK’ VR F ifi– Target Generation: MAK’s VR-Forces, or program-specific
 The Agent provides a consistent interface to these alternatives
 This frees each program to choose the alternative the meets their

d b tneeds best:
– Capability
– Cost

A il bilit– Availability
– User preference

Summary

 Our TestForward approach is explicitly tasked to both
standardize and adapt:

D l t d d ATDD th d th t dil i t t– Deploy a standard ATDD method that readily integrates program-
specific interfaces and test techniques

– Build on a unified automation framework and common scripting
t h l th t d i i t i t f th h d l A ttechnology that drive varying system interfaces through modular Agents

