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Autonomy Test & Evaluation Challenge

Open the ‘pod bay doors, Hal.
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T&E Throughout the Entire Engineering Process

Methods & Tools Assisting in Requirements Cumulative Evidence through Run Time Behavior
Development and Analysis RDT&E, DT, & OT Prediction and Recovery
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Implementation RDT&E, DT, & OT

Assurance Arguments for
Autonomous Systems

OSD Autonomy COI Test Evaluation Verification and Validation Working Group, Technology Investment Strategy 2015-2018, June 2015.
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Measuring Autonomous Systems

= Objective — Autonomous system metrics are use to provide trust.
Measurement-derived analysis should provide operators with insight into
mission capability as a function of operating conditions.

= Measuring the “level of autonomy” is not useful [ref. DSB 2012/2015]

= Autonomy == Decisions - Measuring autonomy requires measurement of
autonomous system decisions within the context of the system’s physical
plant and the current operating conditions. Applicable metrics may be derived
from:

» Command and Control Theory [Alberts & Hayes]
» Control Theory

» Information Theory [Shannon] New analytical methods are
> Game Theory and Decision Science required because...
= Measures of Performance Statistical analysis of autonomous
» Mission Objectives that will be satisfied systems operating in adversarial
.. : . : conditions is not valid without an
» Mission Constraints that will be avoided accurate model of the adversary’s

= Measures of Effectiveness cognitive performance.
» Quantitative assessment of MOP
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TEVV Process
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Torens, C., Adolf, F. (2014), “V&V of Automated mission planning for UAS”, NATO SCI-274 Workshop Verification and
Validation of Autonomous Systems, Imperial College, London, June 24-25.
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Formal Methods — Analyzing the Algorithm

Formal
Methods

Hardware
In-the-loop
Test

Software
In-the-loop
Test

Torens, C., Adolf, F. (2014), “V&V of Automated mission planning for UAS”, NATO SCI-274 Workshop Verification and
Validation of Autonomous Systems, Imperial College, London, June 24-25.
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Formal methods
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Static Testing — Testing the Implementation of the

Algorithm

Software Engineering Methods
« Coverage Analysis

* Function Point Analysis
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Torens, C., Adolf, F. (2014), “V&V of Automated mission planning for UAS”, NATO SCI-274 Workshop Verification and
Validation of Autonomous Systems, Imperial College, London, June 24-25.
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Unit Testing and System-wide Software In-the-loop
Testing
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Torens, C., Adolf, F. (2014), “V&V of Automated mission planning for UAS”, NATO SCI-274 Workshop Verification and
Validation of Autonomous Systems, Imperial College, London, June 24-25.
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Mixed HWIL and Simulation-based Testing of

Autonomous Systems

A 4
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Software Simulations for Autonomy Testing

M&S Toolkit that models individual actor knowledge and decision-making

Modeling fidelity must be equal to or greater than the level of fidelity used by
the unmanned vehicle’'s reasoning engine.

Since cognitive algorithms typically operate with abstractions these tools
should by low fidelity
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Criticality-based Testing

= Although we cannot exhaustively

test any controller, perhaps we ttf=c ‘ B
emphasize test scenarios for which ‘
no human intervention is possible: ‘ ‘ ‘

= A fault scenario will cause a critical @ ‘ ‘ ‘ — S
failure in ttf seconds = ‘ ttf

= A human can resolve a fault O
scenario in h seconds ‘ ‘

= A controller can resolve a fault ttf = h —
scenario in ¢ seconds. For most ‘ ‘ ‘
faults, we assume c << h

= An ‘ideal’ controller will solve all fault ‘
scenarios for which ttf < h ‘ ‘

+

= Thus, identify and test all the fault
scenarios S that have a solution and

for which ttf <h @ fault scenario with no solution

= time to mission failure @ fault scenario with solution
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Criticality Testing Metrics
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Test time

> After 4.17 seconds of testing all failure combinations capable of
causing a catastrophic failure within 1.0 seconds had been tested.
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Visual technigues for data anal

Defines risk conditions
through the lowest
common denominator

Complete Utility States Complete Utility States
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* Processing a visual map exposes the most influential states

 This provides a clustering of critical test cases to be “examined”
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Comparison of Stimulation Techniques
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Hardware in-the-loop Testing (Bench and Flight)
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Torens, C., Adolf, F. (2014), “V&V of Automated mission planning for UAS”, NATO SCI-274 Workshop Verification and
Validation of Autonomous Systems, Imperial College, London, June 24-25.
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Testing of Autonomous Systems in Complex
Environments (TACE)

Low Fldelitv Virtual

érbund Statlori & .
Onboard Test Payload

TACE can support testing of

autonomous air, ground, :
surface and undersea vehicles Off-board simulator produces
- e complex environments by simulating

low-fidelity interactions
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TACE System Architecture
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TACE Flight Tests at Aberdeen Test Center

Five Test Events with Multiple Sorties Were Executed during January/February 2014

APL Test Team on the tarmac at Hand launch of the Procerus
Phillips Army Airfield (PAAF) research AUV controlled by
Aberdeen Test Center (ATC) JHU/APL’s Autonomy Tool Kit

(ATK)
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Safety Manager Display
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Putting it all together — Making the Assurance Argument

) Implementation
Requirements Logical Analysis Design Solution

Requi ts Definiti
equirements Definition it

Transition Validation Verification Integration

Assurance Arguments for
Autonomous Systems

Required Research — How do we make a compositional argument that combines

» Licensure — Empirical Evidence from experienced “in the wild”

» Experimental Evidence — Software in-the-loop and Controlled Hardware in-the-loop

« Formal Proof of Correctness

Cognitive Systems Engineering — How do we integrate unit tests into a system-wide argument?
Testing as a Lifetime Sport — For those Autonomous systems that learn, testing doesn’t end

with operational testing. w
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