

Automatic Hit Detection System for Real-Time Target Hit Feedback

Daniel Holden, NSWCDD E41

Engineer

John Deasy, NSWCDD E41 Physicist Chris Weiland, NSWCDD E41 Chief Engineer

UNCLASSIFIED **Presentation Overview**

- Motivation and Goals
- System Architecture
- Remote Module
 - Sensor Devices
 - Master Controller
 - Communications
- Base Station
 - Communications
 - UI Software
- Test Results
- Future Development

Ceramic Impact Sensor

Remote Module (RM) Hardware

User Interface- Personnel Lethality Target Example

Motivation: All branches of US Military execute live fire testing, from ammunition development to platform level requirements verification, LFT&E and OT

- Current technology lacks flexible/modular real-time hit detection for collecting data and supporting analyses
- Metrics and test objectives cannot be assessed real-time during test event
- Example: assessing functional kill types on targets during live fire testing and realtime shot placement during munitions testing
- **Goal:** develop a flexible/modular hit-detection sensor and supporting system that allows real-time detection of target impact points
- Provide real-time hit-detection feedback of critical target locations
- System can be applied to a variety of test target configurations and support data collection for appropriate analyses
- Provide real-time threat assessments of project metrics and test objectives
 - Example includes casualty assessment of personnel targets

UNCLASSIFIED System Architecture

NA

DAHLGREN

System Schematic

Remote Module- Sensor Devices

Sensor consists of breakable backing/substrate (ceramic, paper, etc.) overlaid with a conductive trace

Sensor microcontrollers (MCU) consist of inexpensive (~\$1) 8-bit MCU, programmed with unique ID number

MCU measures voltage across sensor to determine health, and sends and receives data from Master Controller

http://www.mesoscribe.com/sensors/crack-detection-sensors/

Remote Module- Master Controller

Master Controller (MC) consists of Arduino Mega 2560 (~\$46), which is the "brains" of the RM

Uses GPS module (~\$68) to tag sensor impacts with GPS timestamps

Communicates with sensor devices via wired or wireless electronic communications medium

Sends/receives data and commands from Base Station using RF Transceiver (~\$75)

- 900 MHz, 200 kbps
- 6000 m range with basic whip antenna (upgradeable)

Modular Architecture

Comparable laptop solution (Labview, NI-Daq): >\$3,000 vs Remote Module (~\$190)

Master Controller Hardware (~\$190)

Remote Module- Master Controller

Sensor Devices Comms

- On bootup, scan comms bus for all sensor devices
- Retrieves health status

GPS Module

- Synchronize with NEMA strings periodically
- Synchronize with GPS second start pulse
- Timestamp all outgoing messages

Master Controller Software Loop

UI Comms

- Sends sensor health updates
- Recevies and carries out commands
 - Full status request
 - □ Number of Targets/sensors
 - Start testing mode
 - □ Stop testing mode
 - Restart sensor device comms bus
 - Destination address change
- Send Heartbeat messages at period time intervals
- Stores critical outgoing messages in multiple-message buffer

Resend Message Buffer

- Checks for RF Transmitter
 TX Status ack
- Checks for UI ack
- Resends message if acks not received within specified time

Remote Module Communications

Communications bus between Master Controller (MC) and sensor devices is used to send data and commands

Prototype system developed with wired solution:

- Digital I2C Interface: allows MC to communicate with up to 120 sensor devices using 2 wires
- Data rates: 50 kbps 800 kbps

Active RFID (wireless) solution currently under development (low power RF transceiver, 125 kbps)

- Proof of concept with Arduino sensor device
- Need to develop transceiver libraries/software for PIC MCU

Low power RF Transceiver (~\$25)

Arduino Active RFID RM and Sensor Device proof of concept

Г

Remote Module Demonstration

Pre-Impact Output:			Post-Impact Output:			
0x16	3-1	1	0x16	3-1	1	Sensor Health Update: 4 1 0
0x17	3-2	1	0x17	3-2	1	
0x18	3-3	1	0x18	3-3	1	GPS TIMEStamp: 0 A IA I C8
0x19	3-4	1	0x19	3-4	1	Timo: 00.10.26 456 UTC
0x1A	3-5	1	0x1A	3-5	1	TIME. 00.10.20.450 UTC
0x1B	3-6	1	0x1B	3-6	1	
0x1C	4-1	1	0x1C	4-1	0	
Sending Message:						
			7E 0 1	8 10 EA	0 0) 0 0 0 FF FF FF FE 0 40 C2
			EA <u>0</u> A	. 1A 1 C	8 4 1	0 2C
			Messag	e added	l to b	affer slot: 0
NSWCDD-AP-16-00166; Distribution Statement A: Approved for public release.						

Base Station Communications

Base station sends and receives data and commands from Remote Module using a wireless communications device

Line-of-sight applications: XBee Pro RF Transceiver

- 6000m range with low gain antenna
- 28 mile range with high gain antenna
- Low cost option: ~\$75
- Data rate: 200 kbps

Non-line-of-sight applications: Iridium Satellite Network or equivalent

- Satellite network for worldwide data communication
- Higher cost option: >\$2000 + data costs

http://www.digi.com/products/xbee-rfsolutions/modules/xbee-pro-900hp

http://www.bluecosmo.com/satellite-trackingmonitoring

4/29/2016

System Level Data Flow

Event	Base Station	Data Flow	Remote Module
System Initialization	Connect to comms device		Connect to comms deviceSynch with GPSInitialize bus
Heartbeat Messages	Check communications with Remote Module		Send heartbeat message at predefined intervals
UI Full Sensor	Send full sensor status request command		Receive message, aggregate sensor data for all sensor
Status Request	Receive data, populate sensor/target graphics		Send sensor data
Sensor Impact	 Receive sensor update message Record data, update sensor/target graphics 		 Sensor microcontroller detects sensor break Send sensor impact data and GPS timestamp
	Send received message acknowledgement		If no acknowledgement received, resend sensor impact message

UNCLASSIFIED Base Station GUI

- GUI interfaces with communications device to send commands to RM, and receive sensor data from RM
- Written in JAVA programming language
 - No license required, free for any computer to run
 - Once program is compiled, capability to run on any computer platform
- GUI Features:
 - Displays custom graphical representation of target including target impact location and hit time
 - Logs all communications and sensor data to file
 - At end of test, sensor data is processed and sorted by hit time, and additional custom analyses can be performed that support assessment
 - Save screenshots or screen-videos of tests

Base Station GUI- Generic Target Array Example

NAVSTEA

DAHLGREN

Base Station GUI- Personnel Lethality Example

NSWCDD-AP-16-00166; Distribution Statement A: Approved for public release.

NAVSEA

DAHLGREN

15

UNCLASSIFIED Future Testing/Development

• Future Testing:

- Substrate/barrier sensor testing/confirmation
- Testing of a fully instrumented target at remote location

Sensor Devices PCB Design

RFID Master Controller

- Future Development:
 - Design/print custom electronics boards
 - Active RFID solution
 - Investigate Passive RFID solution
 - Iridium Satellite communications (non line of sight applications)