

U.S. Army Research, Development and Engineering Command

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Benefits of an Active Recoil Control System

William Bartell, Joshua Stapp, Matthew Tomik, Philip Wetzel April 26, 2016 – NDIA Armament Systems Forum, Fredericksburg, VA

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

UNCLASSIFIED

- Recoil of Large Caliber Weapons
- Active Recoil
- Active Recoil applied to Soft recoil
- ADIM: A Case Study
- Conclusion

- Recoil systems are designed to dissipate a short duration firing impulse over a greater time and distance
- Distributing the firing load reduces the impulse imparted to the supporting structure
- Traditional recoil systems are optimized for the maximum weapon impulse
- Limited compensation is possible at the cost of added complexity (i.e. elevation compensation)
- Most variables leading to atypical firing impulses are unaccounted for, including:
 - Propellant temperature
 - Munition lot variations
 - Lesser charge/increment fires
 - Hydraulic fluid properties (viscosity)
 - Manufacturing tolerances of the recoil mechanisms
- This results in underutilization of the available recoil stroke for most fires

- Active recoil uses feedback from sensors to control the recoil system in real time
- By controlling the recoil forces the available recoil length can be fully utilized resulting in reduced impulses transmitted to the support structure
- At reduced charges/increments the optimization is more dramatic

Displacement

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited

- 1. Variable Viscosity Fluid
 - Magnetorheological
 - Electrorheological
- 2. Variable Orifice Valve

Should Fail Safe!

3. Electric Motor

US ARMY

RDECOM

- 4. Mechanical Brake
 - Eddy Current
 - Friction Disc
 - Hysteresis
 - Magnetic Particle

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

- Active Recoil Applied to Traditional Recoil
 - Potential Benefits

US ARMY

RDECOM

- Utilize the entire recoil stroke for all charges/increments
- Perform elevation compensation with active recoil device
- Simplify recoil buffer
- Loosen manufacturing tolerances
- Perform diagnostics/prognostics on recoil components
- Increase fatigue life of structure
- Drawbacks
 - Does not improve force curve for max firing impulse
 - Support structure must still be designed to handle max firing load
 - Requires power
- Conclusion
 - Historically, the sensors and processing hardware required to implement active recoil produced marginal benefits for the cost
 - Given modern technologies, it may make sense to revisit active recoil

What About Soft Recoil?

• Benefits

- For similar recoil masses, initial recoil velocity in traditional recoil is <u>~twice</u> that of soft recoil.
- Recoil stroke can be shortened **or** recoil force can be reduced.

Employment of Soft Recoil in Modern Weapons

UNCLASSIFIED

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Soft Recoil Challenges Solved with Active Recoil

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

9

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

US ARMY

RDECOM

Automated Direct/Indirect fire Mortar (ADIM)

Active + Soft Recoil

Parameter	Value	Unit
Ammunition Caliber	81	mm
Ammo Capacity	20	rounds
Range	300-6300	m
Traverse	360 cont.	degrees
Elevation	-3 to 85	degrees
Weight	~2300	lbs
Recoil Force	<10,000	lbf
Recoil Force (w/ Active Recoil)	<2,000	lbf

10

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

ADIM Active Recoil Brake

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

11

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

ADIM Active Recoil Control Flowchart

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

ADIM Active Recoil Control Loop

Control System Variables

US ARMY

RDECOM

- Controlled Variables
 - Solenoid Current
 - Recoil velocity
- Disturbance Variables
 - Firing Impulse
 - Passive Recoil Force
- Manipulated Variables
 - Solenoid current

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

15

UNCLASSIFIED

ADIM's employment of Soft Recoil combined with Active Recoil

mm

**

16

UNCLASSIFIED

ADIM's employment of Soft Recoil combined with Active Recoil

mm

17

UNCLASSIFIED

ADIM's employment of Soft Recoil combined with Active Recoil

mm

**

18

UNCLASSIFIED

ADIM's employment of Soft Recoil combined with Active Recoil

mm

**

19

UNCLASSIFIED

ADIM's employment of Soft Recoil combined with Active Recoil

ADIM 2015 5X REDUCTION **IN RECOIL** FORCE

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

- Active recoil on ADIM prototype
 - Reduction of forces
 - Improved handling of variations
 - Going forward

- Future of Active Recoil
 - More viable then in the past
 - Application to other weapon systems
- Questions?

- 1. S.M. Wu, A.N. Madiwale. Optimal Control of Active Recoil Mechanism. Illinois: Rock Island Arsenal; 1976.
- 2. HR Textron. Design concept and experimental study of an Actively Controlled Recoil Mechanism (ACRM) on M109 155mm Howitzer recoil System. Picatinny Arsenal, NJ; 1989. Available on DTIC
- 3. G. Robert Wharton, Steve R. Underwood, Stephen Floroff, Ramon Espinosa. *Innovative Recoil Mechanism.* Picatinny Arsenal; 1991. Available on DTIC
- 4. George Y. Jumper, Stephen Floroff. *Feasability of a Microprocessor Controlled Recoil Mechanism for Large Caliber Artillery Weapons*; 1985. Available of DTIC ARLCD-TR-85007
- 5. Mehdi Ahmadian, Randall J. Appleton, James A. Norris. Designing Magneto-Rheological Dampers in a Fire out-of-battery Recoil System. Transactions on Magnetics, Vol 39 No 1; 2003. Available on IEEE