

GUN & ELECTRIC WEAPON SYSTEMS DEPARTMENT (E)

Active Denial Technology

Presented by Michael Hatfield

Directed Energy Integration & Analysis Branch (E13) Naval Surface Warfare Center Dahlgren Division

National Defense Industrial Association 2016 Armament Systems Forum April 25-28 Fredericksburg, Virginia

Acknowledgments

Much of the development work to date had been conducted by the Air Force Research Laboratory in Albuquerque, NM and funded by the Joint Non-Lethal Weapons Directorate

NSWCDD-PN-16-00105; Distribution Statement A: Approved for public release; distribution is unlimited

WARFARE CENTERS DAHLGREN

- Relation to Radiation Spectrum
- How Active Denial Technology Works
- Legal/Safety
- Evolution of Active Denial Systems
- Gyrotron Theory
- Current Technology Development Efforts
- Questions

WARFARE CENTERS DAHLGREN

95 GHz Radio Frequency Radiation

How ADS Works

- Energy beam heats surface of skin
- Most of the energy is deposited in the first 1/64th inch
- This is where the nerve endings are located
- Causes thermal discomfort

How ADS Works

ADS/ADT Legal, Treaty and Policy Compliance

✓ Multiple Legal Reviews Completed

- The development, acquisition, use and possession of the Active Denial System is allowed under U.S. Domestic Law
- Law of Armed Conflict

DAHLGREN

- * ADS does not cause unnecessary suffering that is disproportionate to the military advantage of using the weapon
- * ADS is discriminate and capable of being controlled and directed against a lawful target
- * There is no specific rule of law prohibiting the use of ADS
- ✓ ADS Arms Control Compliance Reviews Completed
 - ADS is compliant with relevant arms control treaty obligations

- Energy required to produce repel—Varies
- Energy level that results in injury—Stable
- Both are temperature related

Fluence (J/cm2)

ADS effect is thoroughly tested

- Human Effects Risk Characterization complete

 Over 700 volunteers and 11,000+ exposures (laboratory and field)
- Data extending back 15+ years
- Peer-reviewed research results
- Numerous independent reviews

NSWCDD-PN-16-00105; Distribution Statement A: Approved for public release; distribution is unlimited

Active Denial System Test NSWCDD

Testing of Active Denial System Demonstrator at NSWC in 2010.

Field strength and spot size measurements at representative ranges were collected.

Sensors used for Power Measurements

Ν

WARFARE CENTERS DAHLGREN

> NWSCDD Sensor Array

AFRL Sensor and Resistive Fabric (Visual of spot via IR camera)

NSWCDD-PN-16-00105; Distribution Statement A: Approved for public release; distribution is unlimited

Beam Formation

RF Energy Pattern as it leaves the antenna

RF Energy Pattern forms into a coherent beam at the "Near-Field/Far-Field Boundary"

RF Energy Pattern on target area. Depending on antenna directivity and distance to target, spot size can be from a few inches across to several meters across.

Gyrotron Theory

Electrons interact with magnetic field resulting in generation of electric field (RF)

RF Energy Exits

Remaining Electron Beam Energy Absorbed by Collector

Electrons leave filament , interaction with magnetic field results in electrons spinning around the magnetic lines of force. The frequency of rotation is determined by the strength of the magnetic field.

High Power Microwaves

NSWCDD-PN-16-00105; Distribution Statement A: Approved for public release; distribution is unlimited

100 KW Gyrotron

VGB-8095 Gyrotron Oscillator

CPI gyrotrons were the first commercially available high-power, long-pulse/CW, high-frequency devices for plasma fusion experiments and other scientific and industrial applications. CPI-MPP provides an extensive line of gyrotrons that cover frequencies from 28-140 GHz with power levels ranging from 10 kW to 1.3 MW.

The VGB-8095 gyrotron provides up to 100 kW of continuous output power at 95 GHz, and employs a compact cryogen-free refrigerator-cooled superconducting magnet system.

Features

- High Efficiency, Long-Pulse Operation
- Gaussian Output Beam
- CVD Diamond Output Window
- Diode Electron Gun
- Cryogen-Free Superconducting Magnet

Typical Operating Parameters

Power Output	100 kW
Pulse Length	CW
Cathode Voltage	-43 kV
Body Voltage	+7 k∨
Beam Current	5 A
Frequency	95±0.2 GHz
Efficiency	50%
Gyrotron Weight	375 lbs
Output Mode	TEM ₀₀

Megawatt Class Gyrotron

VGT-8115 Gyrotron Oscillator

CPI gyrotrons were the first commercially available high-power, long-pulse/CW, high-frequency devices for plasma fusion experiments and other scientific and industrial applications. CPI-MPP provides an extensive line of gyrotrons that cover frequencies from 28-263 GHz with power levels ranging from 25 W to 1.4 MW.

The VGT-8115 gyrotron delivers up to 1.2 MW of output power at a frequency of 110 GHz for electron cyclotron heating and current drive in fusion plasmas.

CPII 10" Planar Scanning Antenna

- Scanning speed: 1500°/s
- Scanning range: ±45°
- Size: 24" x 16" x 16"
- Weight: 120 lbs

Power supply: weight = 50 lbs, volume = 1.4 ft³
Antenna Control Unit (ACU): weight = 10 lbs, volume = 1.0 ft³

NSWCDD-PN-16-00105; Distribution Statement A: Approved for public release; distribution is unlimited

DAHLGREN

10000,

CPII 30" Planar Scanning Antenna

Joint Non-Lethal Lens Scanner Antenna

KEY PERFORMANCE VALUES WITH STANDARD HARDWARE COMPLEMENT **RF/Electrical Parameters** 95 GHZ (nominal) Frequency range Beam width 0.30° 54.5 dBi (50% efficiency) Gain Side lobes 25dB (typical) Tall guide 0.10 x 0.267" (H, E plane) WR-10 available **RF** Interface Control interface RS-422 Mechanical Parameters (Nominal @20°C) Antenna 22L x 38W x 38H in Size Electronics cabinet 21W x 42L x 28H in Antenna 275 lbs Weight 60 lbs Electronics cabinet Beam Scan rate 1500°/sec Beam Travel ±45° conical region Power consumption 10 A @ 208 VAC , 3¢ 270 VDC Motor Voltage (max) 40 A Peak (max acceleration) Motor current 3 A Steady state Input Power 208 VAC, 3¢ 0.02° Pointing accuracy Software Interface User Interface GUI Linear scan (constant scan); variable speed

Point and Dwell on target

NSWCDD-PN-16-00105; Distribution Statement A: Approved for public release; distribution is unlimited

Software controlled modes

Scan between multiple targets with user defined dwell on each target

Compact ADT Project Collaborative project with UC Davis

High Voltage Power Supply (375 lbs, 21x24x32 in³) Laptop **Data Acquisition for Control System** Antenna Control Unit **Antenna Power Supply** Ion Pumps **CPI Malibu Antenna Multistage Collector** 10 kW CW WSBK Tube **Thermal Management Electron Gun inside Oil Tank DC-AC Inverter** 600 V Battery System Antenna and Stand-By Camera (main power) **Batteries**

- Skid plate size estimate: < 48" x 36" x 72"
- Skid plate weight estimate: < 1500 lbs

Questions

NSWCDD-PN-16-00105; Distribution Statement A: Approved for public release; distribution is unlimited

