

Development of Standardized Test Methods for Quantitative Small Arms Flash Measurements Dr. David F. Dye (david.f.dye@navy.mil) and Jason M. Davis April, 2016, NDIA Armament Systems Forum

## Project Objective

- Current flash measurement methods rely on still (long exposure) photography
- Qualitative assessment of performance
- Poor calibration/standardization
- Objective: Develop and evaluate quantitative small arms muzzle flash measurement methods-emphasis on suppressed weapons
- Effort part of NATO Army Armaments Group (NAAG), Land Capability Group Dismounted Soldier Systems, Suppressor Team of Experts


## NAIVOEA <br> Stages of Muzzle Flash



2-Pre-Flash: Gasses escape before projectile
5-Post Flash: Invisible hot gas emission


3-Primary Flash: Emission from hot gasses

- Still images captured using highspeed shadowgraphy


## Photographic Flash Characterization

- Currently preferred method for flash characterization
- Quantification is difficult using uncalibrated cameras
- Limited to visible flash (using consumer cameras)



## Comparison of Available Methods

## Critical Requirements:

- Reliable calibration
- High sensitivity
- Temporal resolution
- Multiple spectral bands


## Secondary Concerns:

- Shape/size images
- Low cost (relative)
- Easy to use

|  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Reliable intensity measurement | $\checkmark$ |  | $\checkmark$ | $\checkmark$ |
| High sensitivity | $\checkmark$ | X | $\checkmark$ | X |
| Large dynamic range | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Temporal resolution | X | $\checkmark$ | $\checkmark$ | ? |
| Multiple spectral bands | X | X | $\checkmark$ | $\checkmark$ |
| Shape/Size measurement | $\checkmark$ | $\checkmark$ | X | X |
| (Relatively) Low Cost | $\checkmark$ | X | $\checkmark$ |  |
| Ease of operation/maintenance | $\checkmark$ | ? | $\checkmark$ | X |

## N/ IVOEA <br> Open Powder Burn Emission

Objective: Determine visible \& IR spectral regions of interest

- Measure combustion emission spectra of various propellants
- Visible and MWIR Emission Measured
- Spectraline High Speed MWIR Spectrometer: 1.2-4.8 $\mu \mathrm{m}$
- StellarNet Blue Wave Visible/NIR Spectrometer: 350-900 nm
- Powder Samples burned on steel plate
- Ignited by electric match



## N/LVSEA <br> Open Powder Burn Emission

## Visible/NIR

- Emission dominated by:
- Sodium: $\lambda=589.0,589.6 \mathrm{~nm}$
- Potassium: $\lambda=766.5,769.9 \mathrm{~nm}$
- Propellants show different intensities and peak ratios
- Expected based on different formulations


## MWIR

- Emission dominated by $\mathrm{CO}_{2}$
- Other species may provide "fingerprints" for different propellants
- Relatively Low resolution of spectrometer prevented definitive chemical assignment

Open Powder Burn VIS/NIR Emission


Open Powder Burn MWIR Emission


## Open Powder Burn Emission

- Major emission features were repeatable
- Some differences expected due to experimental configuration



## Flash Characterization Equipment

- Temporal flash intensity measurements
- Gigahertz-Optik TR9600 photodiode amplifiers
- Interfaced via custom GPIB controller software (LabVIEW)
- Analog output recorded using National Instruments DAQ system
- Visible light detector: Silicon photodiode
- Infrared detector: InGaAs



## Spectral Flash Characterization

- Spectral emission profiles recorded for various flash tests
- "B" ammunition used for spectral flash emission tests
- Secondary flash dominated by atomic emission lines
- Primary flash was too dim for reliable measurement
- Tracer rounds produced expected "red" emission lines



## Temporal Flash Characterization

- Test Objectives:
- Can instrumentation resolve fast features of the flash profile?
- Can instrumentation quantitatively and repeatably measure intensity of flash profile?
- Integration yields W/sr
- Notes:
- Intensities plotted in amps to minimize apparent intensity differences due to amplifier gain settings

Weapon 1, Ammo C: Single Shots


## Temporal Flash Characterization

- Expected features observed
- Early: Pre-Flash
- Consistent profile
- Bandwidth limiting feature
- Small total energy emission
- Mid: Primary Flash
- Consistent duration \& intensity
- Late: Secondary Flash
- Highly variable duration \& intensity
- Large variability observed in flash intensities
- Secondary flash is inconsistent
- Visible light level triggering is not reliable
- Recommend triggering from either IR or acoustic signal
- IR triggering used successfully in these tests

Weapon 1, Ammo C: Single Shots


## Temporal Flash Characterization

- Ammunition choice contributes to secondary flash likelihood
- Ammo B: no secondary flash
- Ammo C: frequent secondary flashes
- Note: Pre-Flash intensity was clipped using previous gain settings
- Amplifier ringing apparent in enlarged plot
- "Apparent Visible Intensity" calculated from intensity \& duration
- Early "spike" is more intense, but will probably not dominate how bright the flash appears
- Primary flash is the major contributor to apparent intensity

Weapon 1, Ammo B: Single Shots


## Temporal Flash Characterization

- Ammunition choice contributes to secondary flash likelihood
- Ammo B: no secondary flash
- Ammo C: frequent secondary flashes
- Note: Pre-Flash intensity was clipped using previous gain settings
- Amplifier ringing apparent in enlarged plot
- "Apparent Visible Intensity" calculated from intensity \& duration
- Early "spike" is more intense, but will probably not dominate how bright the flash appears
- Primary flash is the major contributor to apparent intensity

Weapon 1, Ammo B: Single Shots (Detail)


## Temporal Flash Characterization

- Addition of suppressors has a major impact on measured intensity
- Infrared and visible signals both greatly reduced
- "Cold" shots were much more intense than "warm" shots


Weapon 2, Suppressor, Ammo C:
Single Shots


## Temporal Flash Characterization

- Different weapons showed different temporal profiles
- Minimal pre-flash apparent
- Primary flash was predominant feature
- Very few secondary flashes were observed (none shown here)
- Addition of a suppressor had a major impact
- Visible detector was insufficiently sensitive to accurately measure intensity
- Primary flash apparent to human observers
- Note: triggering timing was inconsistent for this series due to higher-than-optimal threshold value, and can be easily adjusted.

Weapon 3, Single Shots


Weapon 3 w/ Suppressor, Single Shots


## Burst Flash Characterization

- Multi-round bursts were measured
- Clear temporal resolution
- Unpredictable secondary flash resulted in saturation of some signals in the series
- High dynamic range detector/amplifier configuration necessary to measure bright and dim events
- Dual photodiodes/amplifiers with different gain settings may be a solution



## Burst Flash Characterization

- Multi-round bursts were measured
- Clear temporal resolution
- Unpredictable secondary flash resulted in saturation of some signals in the series
- High dynamic range detector/amplifier configuration necessary to measure bright and dim events
- Dual photodiodes/amplifiers with different gain settings may be a solution

Weapon 1: 5 Shot Bursts


Weapon 1: 5 Shot Bursts
(Detail)


## Burst Flash Characterization

WARFARE CENTERS

- Mixed ammunition burst
- Shots 1\&2: Ammo B
- Shot 3: Tracer
- Shot 4-6: Ammo C
- Ammunition differentiation may be possible
- 20 shot burst
- Intensity of signal increased through series of shots

Weapon 1: Mixed Ammo Bursts


Weapon 1: 20 Shot Burst


- Photometers provide reliable muzzle flash measurement
- Spectral radiant intensity measurements:
- Visible, NIR, SWIR, and MWIR detectors available
- Clearly defines measured intensity (W/sr)
- Secondary flash creates dynamic range issues
- "Bright" flashes saturate high-gain detectors/amplifiers
- Possible solution is multiple detector/amplifiers
- High sensitivity COTS solutions are being explored
- Suppressed measurements pose sensitivity issues
- Evaluation of alternate detectors is ongoing
- Combination of photometry and photography is current path forward
- Documentation and validation of standards is ongoing
- Final procedures established by Fall, 2016

