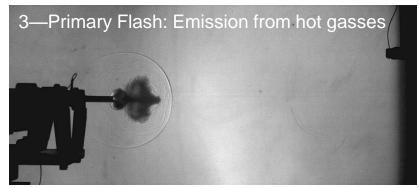


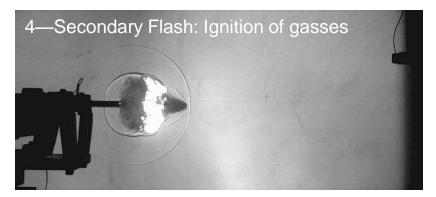
HARNESSING THE POWER OF TECHNOLOGY for the WARFEGHLER

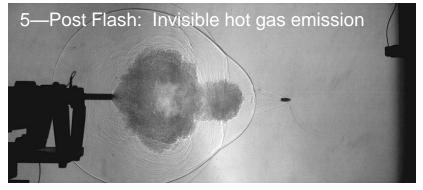
CAPT JT Elder, USN Commanding Officer NSWC Crane

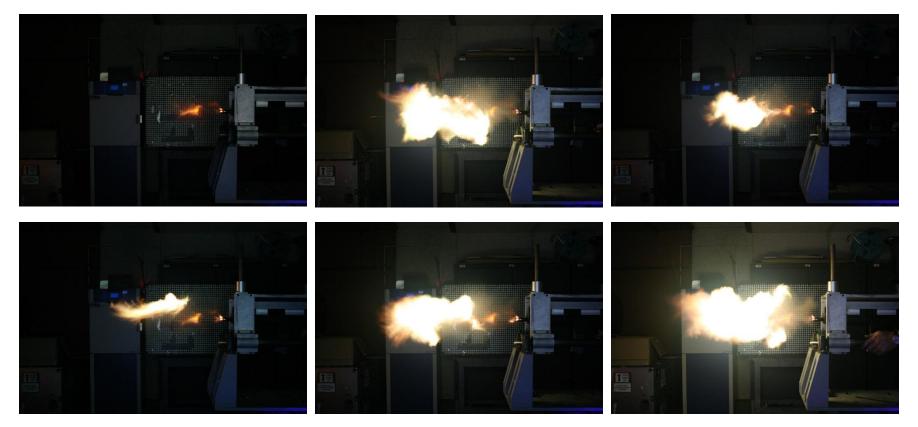
Development of Standardized Test Methods for Quantitative Small Arms Flash Measurements

Dr. David F. Dye (david.f.dye@navy.mil) and Jason M. Davis April, 2016, NDIA Armament Systems Forum


- Current flash measurement methods rely on still (long exposure) photography
 - Qualitative assessment of performance
 - Poor calibration/standardization
- Objective: Develop and evaluate quantitative small arms muzzle flash measurement methods—emphasis on suppressed weapons
 - Effort part of NATO Army Armaments Group (NAAG), Land Capability Group Dismounted Soldier Systems, Suppressor Team of Experts




Stages of Muzzle Flash


• Still images captured using highspeed shadowgraphy

Images courtesy Army Research Laboratories Aerodynamics Experimental Facility

Photographic Flash Characterization

- Currently preferred method for flash characterization
 - Quantification is difficult using uncalibrated cameras
 - Limited to visible flash (using consumer cameras)

Comparison of Available Methods

Critical Requirements:

- Reliable calibration
- High sensitivity
- Temporal resolution
- Multiple spectral bands

Secondary Concerns:

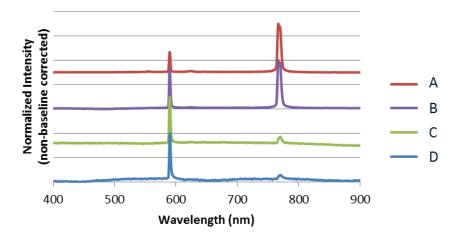
- Shape/size images
- Low cost (relative)
- Easy to use

	Still Photography	H.S. Photography	Radiometry	H.S. Spectrometers
Reliable intensity measurement	\checkmark	?	✓	\checkmark
High sensitivity	\checkmark	Х	\checkmark	Х
Large dynamic range	\checkmark	✓	✓	\checkmark
Temporal resolution	Х	✓	✓	?
Multiple spectral bands	Х	Х	✓	\checkmark
Shape/Size measurement	\checkmark	\checkmark	Х	Х
(Relatively) Low Cost	\checkmark	Х	✓	?
Ease of operation/maintenance	\checkmark	?	\checkmark	Х

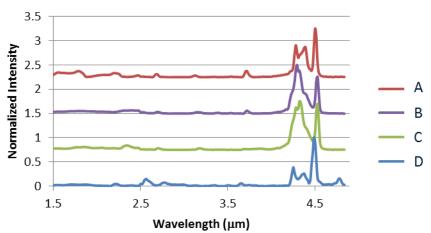
Objective: Determine visible & IR spectral regions of interest

- Measure combustion emission spectra of various propellants
- Visible and MWIR Emission Measured
 - Spectraline High Speed MWIR Spectrometer: 1.2-4.8 μm
 - StellarNet Blue Wave Visible/NIR Spectrometer: 350-900 nm
- Powder Samples burned on steel plate
 - Ignited by electric match

Open Powder Burn Emission

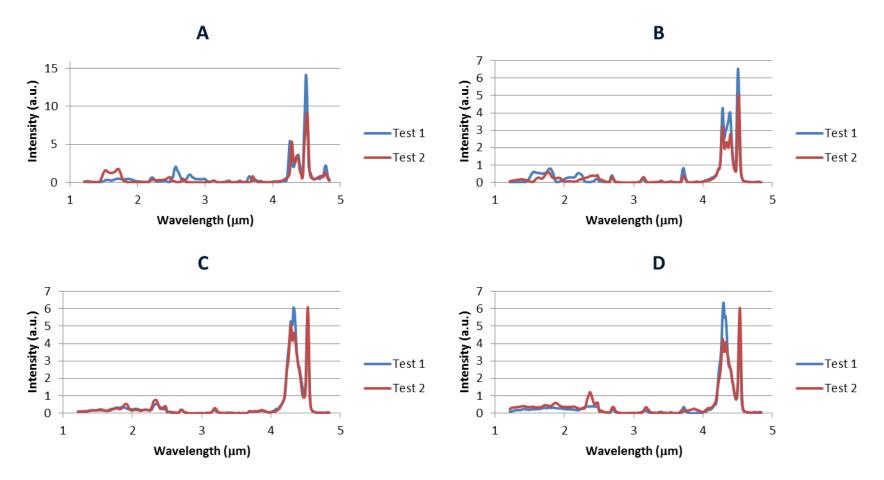

Visible/NIR

- Emission dominated by:
 - Sodium: λ = 589.0, 589.6 nm
 - Potassium: λ = 766.5, 769.9 nm
- Propellants show different intensities and peak ratios
 - Expected based on different formulations


MWIR

- Emission dominated by CO₂
 - Other species may provide
 "fingerprints" for different propellants
- Relatively Low resolution of spectrometer prevented definitive chemical assignment

Open Powder Burn VIS/NIR Emission



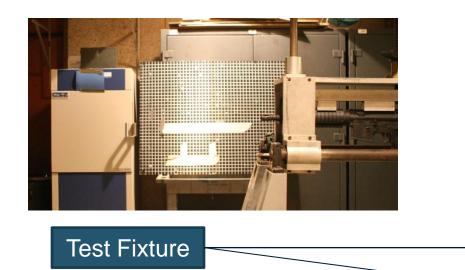
Open Powder Burn MWIR Emission

- Major emission features were repeatable
 - Some differences expected due to experimental configuration

Flash Characterization Equipment

10'

- Temporal flash intensity measurements
 - Gigahertz-Optik TR9600 photodiode amplifiers
 - Interfaced via custom GPIB controller software (LabVIEW)
 - Analog output recorded using National Instruments DAQ system
 - Visible light detector: Silicon photodiode
 - Infrared detector: InGaAs



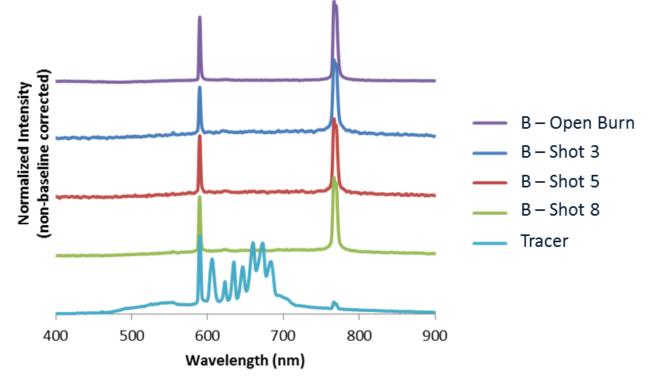
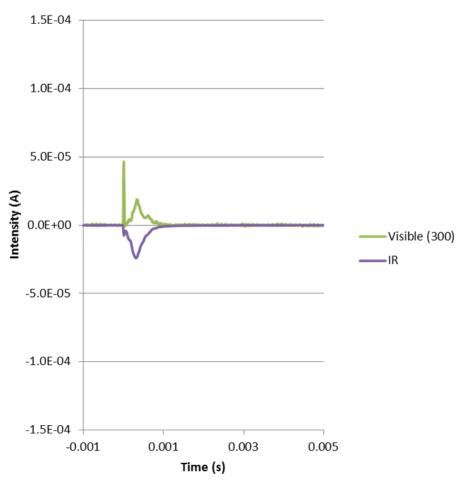
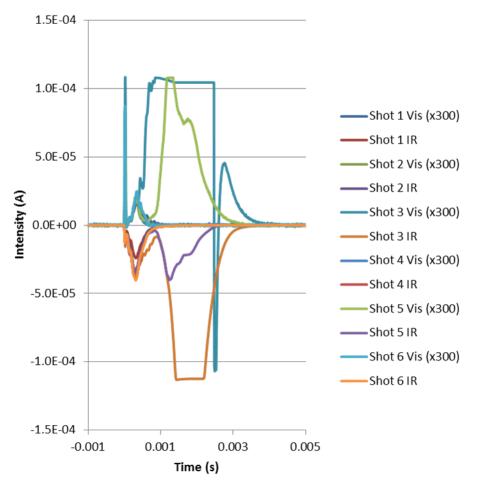


Photo-

detectors


- Spectral emission profiles recorded for various flash tests
 - "B" ammunition used for spectral flash emission tests
 - Secondary flash dominated by atomic emission lines
 - Primary flash was too dim for reliable measurement
 - Tracer rounds produced expected "red" emission lines

- Test Objectives:
 - Can instrumentation resolve fast features of the flash profile?
 - Can instrumentation quantitatively and repeatably measure intensity of flash profile?
 - Integration yields W/sr
- Notes:
 - Intensities plotted in amps to minimize apparent intensity differences due to amplifier gain settings


Weapon 1, Ammo C: Single Shots

- Expected features observed
 - Early: Pre-Flash
 - Consistent profile
 - Bandwidth limiting feature
 - Small total energy emission
 - Mid: Primary Flash
 - Consistent duration & intensity
 - Late: Secondary Flash
 - Highly variable duration & intensity
- Large variability observed in flash intensities
 - Secondary flash is inconsistent
 - Visible light level triggering is not reliable
 - Recommend triggering from either IR or acoustic signal
 - IR triggering used successfully in these tests

Weapon 1, Ammo C: Single Shots

- Ammunition choice contributes to secondary flash likelihood
 - Ammo B: no secondary flash
 - Ammo C: frequent secondary flashes
- Note: Pre-Flash intensity was clipped using previous gain settings
 - Amplifier ringing apparent in enlarged plot
 - "Apparent Visible Intensity" calculated from intensity & duration
 - Early "spike" is more intense, but will probably not dominate how bright the flash appears
 - Primary flash is the major contributor to apparent intensity

1.5E-04 1.0E-04 Shot 2 Vis (x300) 5.0E-05 -Shot 2 IR —Shot 3 Vis (x300) Intensity (A) ——Shot 3 IR 0.0E+00 -Shot 4 Vis (x300) Shot 4 IR —Shot 5 Vis (x300) -5.0E-05 —Shot 5 IR -Shot 6 Vis (x300) Shot 6 IR -1.0E-04 -1.5E-04 -0.001 0.001 0.003 0.005 Time (s)

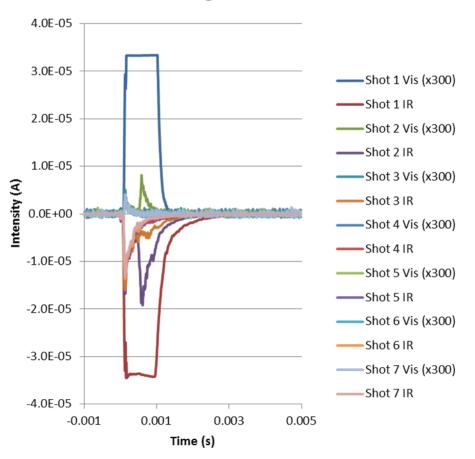
Weapon 1, Ammo B: Single Shots

- Ammunition choice contributes to secondary flash likelihood
 - Ammo B: no secondary flash
 - Ammo C: frequent secondary flashes
- Note: Pre-Flash intensity was clipped using previous gain settings
 - Amplifier ringing apparent in enlarged plot
 - "Apparent Visible Intensity" calculated from intensity & duration
 - Early "spike" is more intense, but will probably not dominate how bright the flash appears
 - Primary flash is the major contributor to apparent intensity

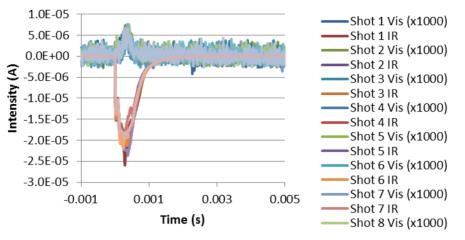
5.0E-05 3.0E-05 -Shot 2 Vis (x300) Shot 2 IR 1.0E-05 ——Shot 3 Vis (x300) Intensity (A) Shot 3 IR -Shot 4 Vis (x300) -Shot 4 IR -1.0E-05 —Shot 5 Vis (x300) Shot 5 IR -Shot 6 Vis (x300) -3.0E-05 —Shot 6 IR -5.0E-05 -0.00010.0004 0.0009

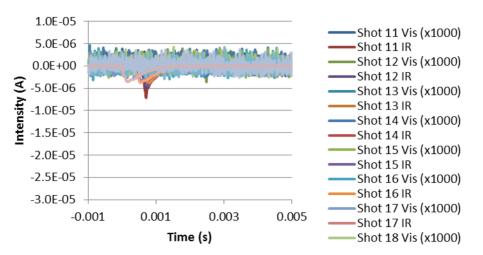
Time (s)

Weapon 1, Ammo B: Single Shots (Detail)



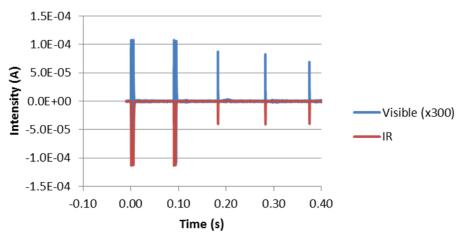
- Addition of suppressors has a major impact on measured intensity
 - Infrared and visible signals both greatly reduced
 - "Cold" shots were much more intense than "warm" shots

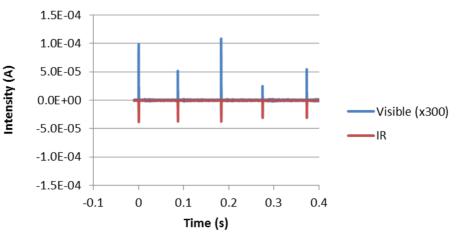

Weapon 2, Suppressor, Ammo C: Single Shots



- Different weapons showed different temporal profiles
 - Minimal pre-flash apparent
 - Primary flash was predominant feature
 - Very few secondary flashes were observed (none shown here)
- Addition of a suppressor had a major impact
 - Visible detector was insufficiently sensitive to accurately measure intensity
 - Primary flash apparent to human observers
- Note: triggering timing was inconsistent for this series due to higher-than-optimal threshold value, and can be easily adjusted.

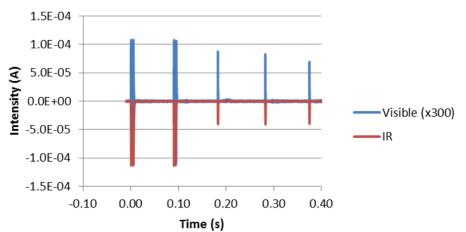
Weapon 3, Single Shots

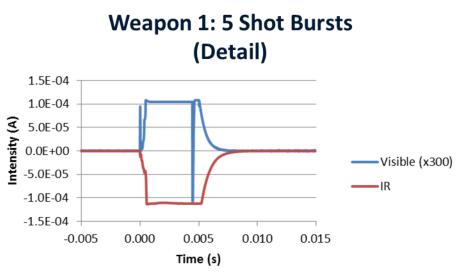

Weapon 3 w/ Suppressor, Single Shots


Burst Flash Characterization

- Multi-round bursts were measured
 - Clear temporal resolution
- Unpredictable secondary flash resulted in saturation of some signals in the series
 - High dynamic range detector/amplifier configuration necessary to measure bright and dim events
 - Dual photodiodes/amplifiers with different gain settings may be a solution

Weapon 1: 5 Shot Bursts





Burst Flash Characterization

- Multi-round bursts were measured
 - Clear temporal resolution
- Unpredictable secondary flash resulted in saturation of some signals in the series
 - High dynamic range detector/amplifier configuration necessary to measure bright and dim events
 - Dual photodiodes/amplifiers with different gain settings may be a solution

Weapon 1: 5 Shot Bursts

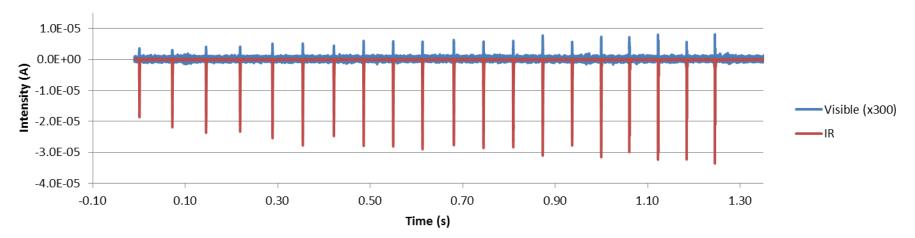
Burst Flash Characterization

- Mixed ammunition burst
 - Shots 1&2: Ammo B
 - Shot 3: Tracer
 - Shot 4-6: Ammo C
 - Ammunition differentiation may be possible
- 20 shot burst
 - Intensity of signal increased through series of shots

4.0E-05 2.0E-05 0.0E+00 -2.0E-05 -4.0E-05 -6.0E-05

0.3

0.4


Time (s)

0.2

0.0

0.1

Weapon 1: Mixed Ammo Bursts

- Photometers provide reliable muzzle flash measurement
 - Spectral radiant intensity measurements:
 - Visible, NIR, SWIR, and MWIR detectors available
 - Clearly defines measured intensity (W/sr)
 - Secondary flash creates dynamic range issues
 - "Bright" flashes saturate high-gain detectors/amplifiers
 - Possible solution is multiple detector/amplifiers
 - High sensitivity COTS solutions are being explored
 - Suppressed measurements pose sensitivity issues
 - Evaluation of alternate detectors is ongoing
 - Combination of photometry and photography is current path forward
- Documentation and validation of standards is ongoing
 - Final procedures established by Fall, 2016