

HARNESSING THE POWER OF TECHNOLOGY for the MARE A Contract of the Contract of

CAPT JT Elder, USN Commanding Officer NSWC Crane

Development of Standardized Test Methods for Quantitative Small Arms Flash Measurements

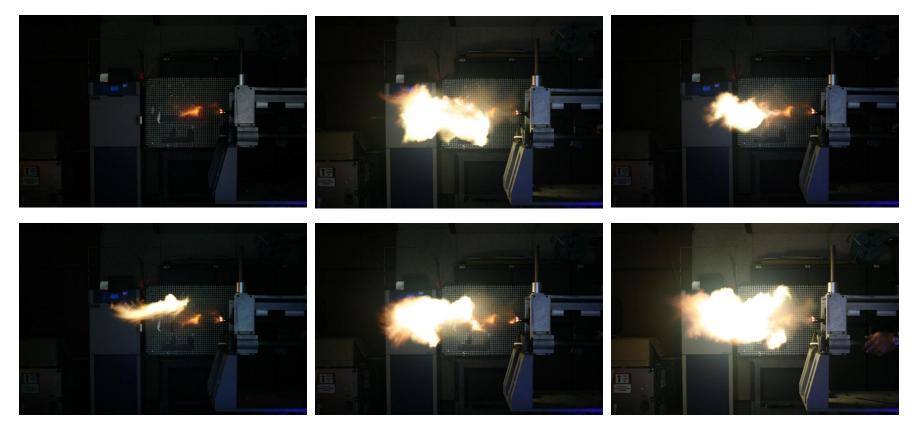
Dr. David F. Dye (david.f.dye@navy.mil) and Jason M. Davis April, 2016, NDIA Armament Systems Forum

CAPT JT Elder, USN Commanding Officer NSWC Crane

2

Development of Standardized Test Methods for Quantitative Small Arms Flash Measurements

Dr. David F. Dye (david.f.dye@navy.mil) and Jason M. Davis April, 2016, NDIA Armament Systems Forum



- Current flash measurement methods rely on still (long exposure) photography
 - Qualitative assessment of performance
 - Poor calibration/standardization
- Objective: Develop and evaluate quantitative small arms muzzle flash measurement methods—emphasis on suppressed weapons
 - Effort part of NATO Army Armaments Group (NAAG), Land Capability Group Dismounted Soldier Systems, Suppressor Team of Experts

Photographic Flash Characterization

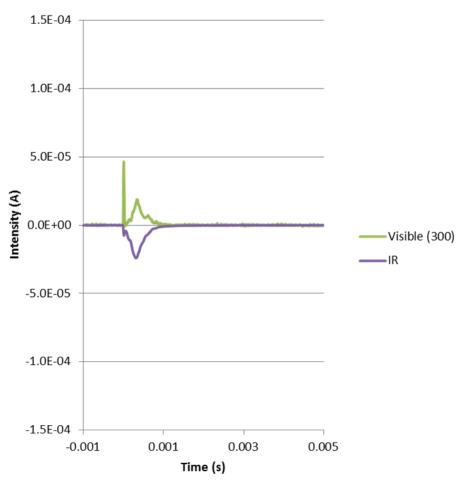
- Currently preferred method for flash characterization
 - Quantification is difficult using uncalibrated cameras
 - Limited to visible flash (using consumer cameras)

Comparison of Available Methods

Critical Requirements:

- Reliable calibration
- High sensitivity
- Temporal resolution
- Multiple spectral bands

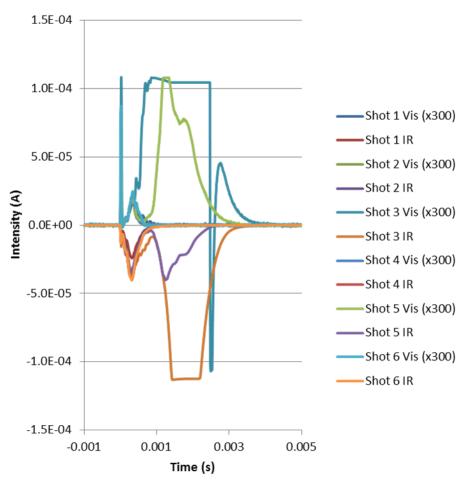
Secondary Concerns:


- Shape/size images
- Low cost (relative)
- Easy to use

	Still Photography	H.S. Photography	Radiometry	H.S. Spectrometers
Reliable intensity measurement	\checkmark	?	\checkmark	\checkmark
High sensitivity	\checkmark	Х	\checkmark	Х
Large dynamic range	\checkmark	\checkmark	\checkmark	\checkmark
Temporal resolution	Х	\checkmark	✓	?
Multiple spectral bands	Х	Х	✓	√
Shape/Size measurement	\checkmark	\checkmark	Х	Х
(Relatively) Low Cost	\checkmark	Х	\checkmark	?
Ease of operation/maintenance	\checkmark	?	\checkmark	Х

- Test Objectives:
 - Can instrumentation resolve fast features of the flash profile?
 - Can instrumentation quantitatively and repeatably measure intensity of flash profile?
 - Integration yields W/sr
- Notes:
 - Intensities plotted in amps to minimize apparent intensity differences due to amplifier gain settings

Weapon 1, Ammo C: Single Shots

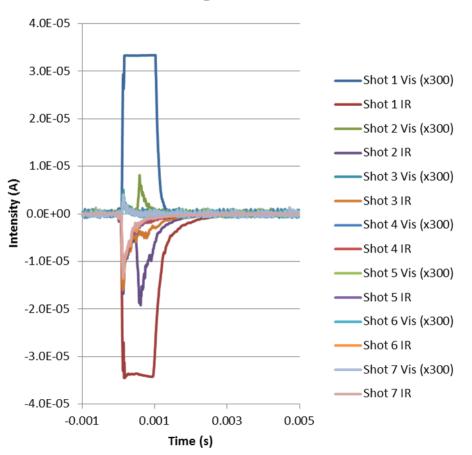

6

Temporal Flash Characterization

- Expected features observed
 - Early: Pre-Flash
 - Consistent profile
 - Bandwidth limiting feature
 - Small total energy emission
 - Mid: Primary Flash
 - Consistent duration & intensity
 - Late: Secondary Flash
 - Highly variable duration & intensity
- Large variability observed in flash intensities
 - Secondary flash is inconsistent
 - Visible light level triggering is not reliable
 - Recommend triggering from either IR or acoustic signal
 - IR triggering used successfully in these tests

Weapon 1, Ammo C: Single Shots

7


Temporal Flash Characterization

- Addition of suppressors has a major impact on measured intensity
 - Infrared and visible signals both greatly reduced
 - "Cold" shots were much more intense than "warm" shots

Weapon 2, Suppressor, Ammo C: Single Shots

- Photometers provide reliable muzzle flash measurement
 - Spectral radiant intensity measurements:
 - Visible, NIR, SWIR, and MWIR detectors available
 - Clearly defines measured intensity (W/sr)
 - Secondary flash creates dynamic range issues
 - "Bright" flashes saturate high-gain detectors/amplifiers
 - Possible solution is multiple detector/amplifiers
 - High sensitivity COTS solutions are being explored
 - Suppressed measurements pose sensitivity issues
 - Evaluation of alternate detectors is ongoing
 - Combination of photometry and photography is current path forward
- Documentation and validation of standards is ongoing
 - Final procedures established by Fall, 2016