

ARL

Collaborative Cooperative Engagement – Parent Child Concept

Frank Fresconi, PhD

UNCLASSIFIED

The Nation's Premier Laboratory for Land Forces

Sciences for Lethality and Protection Campaign

ARL Technology Implementation Plan for Guided Lethality -

TECHNOLOGY IMPLEMENTATION PLAN FOR DESIRED LETHAL EFFECTS AT STANDOFF RANGES IN CONSTRAINED ENVIRONMENTS

UNCLASSIFIED

Guided Lethality

- Resources / Core Capabilities -

Personnel:

- 23 Scientists & Engineers (50% PhD, 50% Masters/Bachelors)
- mechanical, aerospace, electrical, computer science, physics
- 13 Technicians

Facilities:

- -High-Performance Computing
- -Shock Tables and Air Guns
- -GNC Laboratories
- processor/hardware-in-the-loop
- GPS simulation
- munitions sensor/actuator characterization
- anechoic chamber
- component fabrication
- -Free-Flight Ranges
- 2x spark (small/med cal, med/large cal)
- firing range instrumentation (high-speed photo, radar, X-ray, pressure, MET, yaw cards, survey)

Dual Plane Spark Shado vgraph Station

UNDERSTAND LAUNCH, FLIGHT, AND GUIDED DELIVERY TECHNOLOGIES

and multi-national fires and conduct targeting across domains

AWFC 18: Deliver fires and preserve freedom of maneuver

FY16 Research Areas

Survivability and Reliability of GNC Components	Navigation Estimation Algorithms
Fundamental Flow Fields of Complex Airframes	Emerging Non-Vision and Inertial Navigation Technologies
Fluid Mechanics of Maneuvering Projectiles	EO/IR-based Navigation
Dynamic Flight Behavior of Maneuvering Projectiles	Assured Navigation Theory
Maneuver Technologies	Omnisonic Mechanics and Control

UNCLASSIFIED

NAVIGATION WITHOUT GPS COMMERCIAL COMPONENTS GUN HARD MODERATE SIZE/WEIGHT/POWER LABORATORY DEMONSTRATION (TRL 3-4) RELEVANT APPLICATIONS

RDECOM[®]

MORTARS

II S ARMY

- ARTILLERY
- SHOULDER-LAUNCHED
- AIR DROPPED
- MISSILES
- TANKS
- 40MM AND BELOW...

MUNITIONS TECHNOLOGIES

- HIGH MANEUVERABILITY AIRFRAME
 - AIRFRAME (STRUCTURES/AEROMECHANICS)
 - MANEUVER MECHANISM
 - FLIGHT CONTROL ALGORITHMS
- **IMAGE-BASED NAVIGATION**

1000+m

- EMBEDDED IMAGER/PROCESSING
- TARGET ACQUISITION/TRACKING ALGORITHMS
- STATE ESTIMATION ALGORITHMS

100

LAUNCHER

UNCLASSIFIED

The Nation's Premier Laboratory for Land Forces

MOVING TARGET

Current Focus: Moving Target Challenge

- Status -

MODEL: CHALLENGE PLATFORM MAINTAINS COHESION/FOCUS AND DRIVES CRITICAL EXPERIMENTS

High Maneuverability Airframe

understanding of maneuvering flight behavior

- aerodynamic modeling
- flow interactions (roll and pitch/yaw)
- flight control with coupled fluid/flight/actuator dynamics

Time (s)

ē

U

Ĥ

 \overline{K}

understanding of maneuver mechanism

- structural response to gun launch
- dynamic modeling

The Nation's Premier Laboratory for Land Forces

Image-based Navigation

understanding of COTS embedded imagers in ballistic environment

- modeling (sharpness, re-projection, etc.)
- structural response to gun launch

real-time processing of algorithms / embedded electronics

verify performance of state (line-of-sight rate, attitude) estimation algorithms

δv

ά

-[ŵ ×]

 $\begin{bmatrix} \delta p \\ \delta v \end{bmatrix}$

 $\alpha + w$

 \widehat{R}_{h}^{i}

0

0

understand relationship between acquisition/tracking algorithm complexity and performance in sparse/varied environments

The Nation's Premier Laboratory for Land Forces

LETHALITY OF 155MM WITH 10% OF THE ENERGY AND 50% REDUCED COLLATERAL DAMAGE THROUGH MODULARITY How to achieve low-cost delivery against complex target layouts in contested environments?

- TIGHT DISTRIBUTION TO CRITICAL POINTS OF HARD TARGETS
- TAILORED DISTRIBUTION TO LIGHT VEHICLES AND DISTRIBUTED PERSONNEL

How to understand multiple/combined effects?

THEMES: MASSED FIRES OF SMALLER BODIES, COMPLEX THREAT, DISTRIBUTED NAVIGATION INFORMATION, AGGRESSIVE MANEUVERS

UNCLASSIFIED

Swarming Delivery Concepts - Parent-Child -

Swarming Delivery Concepts

Parent Entity with Superior Information Capabilities Enables Guidance to Threat

- image-based navigation, ranging, and communications technologies
- parent glides for extended range and deploys children for coordinated delivery

Child Vehicles Equipped with Minimal Components Maneuvers Off Parent Entity

- mix of ranging/communications technologies
- maneuver to desired pattern

Guided/Swarming Delivery - Challenges -

- Nonlinear dynamics and stability theory
- Physics of flight and discovery of novel maneuver effectors
- high maneuverability control mechanisms/airframes
- Flight control algorithms for novel measurement and maneuver technologies with minimal feedback, constrained input, uncertainties and nonlinear (e.g., coupled roll-pitch-yaw) dynamics
- high-level flight control architectures for collaborative/swarming behaviors
- Assured weapon navigation: target acquisition/tracking/state estimation algorithms derived from various measurements with coupled modeling of technologies in sparse environments
- innovative sensing and multi-agent estimation algorithms
- Rapid, high-fidelity, validated, multi-disciplinary design modeling and simulation
- Cost-effective, accurate experimental techniques
- Extreme Environment
- Velocity scales (0.2 < *Mach* < 5+)
- Time scales (1s < *time-of-flight* < 100s+)
- Size scales (0.50 caliber < diameter < 155mm+)
- Loading/survivability scales (100 < Gs < 100,000+)
- Information/action poor: sensing in high dynamics/sparse (e.g., GPS denied) environments, embedded processing limitations, actuation technology constraints
- Contested/counter-measured, highly-dynamic, military conditions (reliability, temp/vibe, accuracy...)

Affordability

Capability/threat-driven: maintain/increase performance and widen engagement space

UNCLASSIFIED **Scientific Challenge Focus** - Omnisonic Mechanics and Control -

MOTIVATION

Army flies bodies transiting hypersonic to subsonic Mach regimes and many missions would benefit from enhanced maneuverability through uncertain, cluttered, and contested environments

CHALLENGES to understanding flight behaviors of maneuvering bodies across omnisonic regimes

Fluid mechanics: flow separation, vortex interactions, turbulent eddy scales, shock-shock interactions, ...

Flight dynamics/stability/control: algorithms for coupled roll-pitch-yaw and high angle-of-attack, nonlinear stability theory, integrated guidance and control algorithms to reduce sensor/actuator burden, ...

APPROACH

Accurately predict flight physics

Exploit understanding of flight physics:

- Discover mechanisms to produce favorable forces and moments
- Nonlinear control theory

Predicting/Understanding Flight Behaviors with Aerodynamic and Thrust-Vector Control Mechanisms

Theoretical basis for overcoming the scientific barriers to maneuverability of atmospheric flight vehicles

The Nation's Premier Laboratory for Land Forces

Swarming Delivery Challenges - Collaborative Navigation -

What is the minimal information for swarming navigation technology performance?

- heterogeneous mix of imager, ranging, communications on multiple vehicles
- algorithms with local and distributed processing nodes

RDECOM®

U.S.ARMY

Can we improve position accuracy with multiple vehicles flying with poor measurements (latencies, update/link, bias, etc.)?

Example of algorithms for minimal information flow: low throughput adaptive classifiers for imagers

12-bit binary code $P(C = target|f_1, f_2,..., f_N) = \frac{p}{p+n}$

The Nation's Premier Laboratory for Land Forces

Swarming Delivery Challenges

- Collaborative Navigation -

UNCLASSIFIED The Nation's Premier Laboratory for Land Forces

Precision and Cooperative Weapons Flight and Delivery

Omnisonic Mechanics and Control/Ballistic Mechanics

Omnisonic Mechanics and Control: discover how to achieve next generation increase in maneuverability of flight bodies

Assured and Collaborative Navigation Theory: innovate theories to navigate in contested environments across a variety of conditions, likely using multiple agents with RF- or EO/IR-based measurements

Low Cost Hyper-Accurate Munitions Technology

Moving Target Technology: demonstrate moving target (e.g., image-based navigation, high maneuverability airframe) technologies

Maneuvering Flight Bodies for Small-Diameter Munitions: demonstrate control mechanism for

- 1. low speed/setback environment (child vehicle, counter-defilade/small UAS)
- 2. high speed/setback environment (CCRAM/anti-swarm, combat vehicle)

Swarming Weapons

Morphing Airframe Technologies: demonstrate launch and flight technologies for gliding parent vehicle which deploys parent vehicles

Swarming Navigation Technologies: demonstrate navigation technologies for swarming munitions in contested/denied/counter-measured environments

TRANSITION KNOWLEDGE FROM 6.1 TO 6.2 PROGRAMS

DEMONSTRATE TECHNOLOGIES (TRL3-4) FROM 6.2 PROGRAM TO ASSIST TRANSITION TO PARTNERS

UNCLASSIFIED Guided Lethality

- Recent Transitions/Partners -

30 fps Start Date : 2015/11/23

1024 x 1024 +0.000 ms

1/30 sec frame : 1 Time : 06:5

Guided Small/Medium Caliber Munitions

Guided Indirect Fires

* 10

UNCLASSIFIED Guided Lethality - Background -

Predecessors of our Group (Ballistics Research Lab) → understand flight of munitions

PROJECTIL

Flight Dynamics and Stability Theory

Spark Ranges

Exploit skylight polarization as navigational cue in ballistic environment (passive, jam/spoof proof, drift and GPS free)

U.S. ARMY RDECOM®

U.S.ARMY

• Rayleigh-sky modeling and algorithms for azimuth/elevation

Novel measurement techniques (compressive sampling / spectral imaging) for small size/weight/power form factor weapons

