#### **UNCLASSIFED**





### TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Date Presented: 26 April 2016 Presenter: Mark Minisi, US ARMY ARDEC, RDAR-MEM-I, mark.d.minisi.civ@mail.mil



## Pistol Bullet Impacting Gelatin





# **Briefing Outline**



- Background & Objective
- Army Lethality
- What the Tissue Damage Model (TDM) is and how it works (top level)
- Comparative examples of commercial product
- TDM interactive session
- Task/Schedule
- Summary



## Background



•Upcoming requirements documents have performance evaluations in terms of Probability of Incapacitation, P(i).

•Neither industry, nor most of government, has the ability to evaluate P(i) to the current ORCA/SDF standard.

•A "screening" process or "bridge" model to allow more efficient collaboration between industry/OGA and Army, has been discussed between ARDEC and ARL numerous times over the past 10 years.

• Ammunition Industry interviewed to understand how they guide their ammunition development and compared to how the Army does.

•Heavy reliance on FBI methodology by industry which evaluates <u>hit and damage</u> <u>separately</u>, at the technical level. These are later combined at the programmatic level.

•Both industry and FBI are in agreement that industry needs a way of evaluating its developmental product in correlation to the buyer's requirements.

•ARDEC has developed a validated model for "pistol-class" ammunition; working on rifle





## Current Analysis Philosophies for small arms effectiveness evaluation

Fall into 3 categories...

## 1. Probabilistic

- 2. Ballistic Measurables
- 3. Individual / Anecdotal Experiences



Analysis Hierarchy What drives which level you use?



Q: At what level do you make a decision on which system (A,B or C) is best for the soldier?





## FBI Methodology Overview



The FBI terminal performance evaluation method is a 500 point system referred to as the "Penetration Model"

#### Penetration Model Summary

- 1. Penetration depth of deepest portion of projectile
  - a. They want to see 12-18" and assign point accordingly as established by medical professionals
- 2. Standard deviation of the penetration depth
  - a. This speaks to their desire to have consistent performance. Large SD's result in significant point deductions.
- 3. Projectile retained weight
  - a. They want to see 100% weight retained and award accordingly.
- 4. Projectile expansion
  - They want to see the greatest expansion , optimized to seek maximum diameter that will achieve the 12 – 18" of penetration.
- 5. The number of shots that penetrated less than 12 inches
  - a. This again speaks to consistency. The more shots that penetrate less than 12, the more points you lose.



### ARMY Lethality ORCA Static-Dynamic Framework (SDF)

The framework is composed of three stages: (1) Delivery, (2) Damage to Target (injury) and (3) the ability to assess the target's reduced capability to accomplish tasks (incapacitation). Each one of these stages requires an in depth understanding of the rifle and the projectile's characteristics in terms of aerodynamics and terminal effects.



RDECON



## Lethal Mechanisms





## **RDECOM** Army Lethality, simplified



# **RDECOM** TDM Concept/Objective

ARDEC has built an analysis tool for industry that allows them to estimate the amount of average tissue damage a given munition will create when impacting a human target. U.S. Army will ensure the tool aligns with lethality requirements established by their users.

#### Payoff (when complete):

- Increases the number of R&D organizations and efforts MODEL working towards accurately meeting the users needs
- Save cost to the U.S. Army in terms of time investigating commercial concepts with sub-standard terminal performance
- Save cost to industry in terms of prototyping and submissions
- Strengthen technical bonds between gov't tech community, OGA and industry counterparts

#### Recent Events (2<sup>nd</sup> QTR FY16):

- Evaluated first gen concept
- Began technical code development for version 2
- Gather OGA/SME feedback and working into model







How the Tissue Damage model (TDM) works...

RDECOM





#### Why we are using it...

RDECOM



### Kinetic Energy vs. Wound Volume

#### That Energy Thing...

RDECOM)







# **TDM Usage Example**







5 commonly used commercial cartridges chosen solely to evaluate the range of the models capability



RDEGO

- 1. .50 AE, FMJ, 325 grains, 1305 ft/sec, TPR = 60.5
- 2. .40 cal S&W, JHP, 180 grains, 1110 ft/sec, TPR = 47.4
- 3. .45 ACP+P, FMJ, 185 grains, 1130 ft/sec, TPR = 30.1
- 4. .45 ACP, FMJ, 230 grains, 890 ft/sec, TPR = 27.0
- 5. 9mm Parabellum, FMJ, 124 grains, 1140 ft/sec, TPR = 20.6
- 6. .22LR, FMJ, 40 grains, 1200 ft/sec, TPR = 8.6

TPR = Terminal Performance Rating



#### Comparative Model Output: Muscle/Gelatin







2 Discrete Shot lines

Simulated by current version of TDM





Distribution Statement A Approved for public release



## **RDECOM** Comparative Model Output



#### COLOR BANDS TO BE DICTATED BY ORG USING WEAPONS

Data generated with 2015 version of TDM

|        |       |      |      |      | <b>1</b> |      | 2    |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|--------|-------|------|------|------|----------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| TPR    | 107.7 | 75.5 | 71.2 | 65.9 | 60.9     | 54.7 | 48.5 | 46.6 | 44.8 | 44.7 | 42.2 | 41.0 | 39.9 | 39.3 | 38.4 | 38.2 | 37.3 | 37.1 | 36.0 | 34.9 | 34.8 | 33.5 | 32.9 | 32.7 | 31.9 |
| Grains | 484   | 185  | 240  | 240  | 325      | 135  | 180  | 158  | 147  | 125  | 180  | 85   | 103  | 230  | 185  | 155  | 180  | 115  | 180  | 158  | 135  | 115  | 230  | 125  | 158  |
| ft/sec | 1325  | 1850 | 1600 | 1640 | 1305     | 1800 | 1110 | 1635 | 1495 | 1372 | 955  | 1720 | 1450 | 1100 | 1200 | 1223 | 1050 | 1475 | 1040 | 1500 | 1400 | 1395 | 822  | 1350 | 998  |
| KE     | 1885  | 1405 | 1363 | 1432 | 1228     | 970  | 492  | 937  | 729  | 522  | 364  | 558  | 480  | 617  | 591  | 514  | 440  | 555  | 432  | 789  | 587  | 496  | 345  | 505  | 349  |
| PF     | 641   | 342  | 384  | 394  | 424      | 243  | 200  | 258  | 220  | 172  | 172  | 146  | 149  | 253  | 222  | 190  | 189  | 170  | 187  | 237  | 189  | 160  | 189  | 169  | 158  |
| LM     | shot  | FMJ  | FMJ  | FMJ  | FMJ      | FMJ  | JHP  | FMJ  | FMJ  | JHP  | JHP  | JHP  | shot | FMJ  | FMJ  | JHP  | JHP  | FMJ  | JHP  | JHP  | FMJ  | FMJ  | JHP  | FMJ  | JHP  |

|    |      |      |      | 3    |      |      |      |      |      |      | 4    |      |      |      |      |      |      |      | 5    |      |      |      |      |      |      | 6    |        |
|----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|--------|
| N  | 31.1 | 30.5 | 30.5 | 30.3 | 29.8 | 29.8 | 29.3 | 28.8 | 28.2 | 27.4 | 27.3 | 26.9 | 26.2 | 25.8 | 25.3 | 23.9 | 23.4 | 22.8 | 22.6 | 22.1 | 21.6 | 21.2 | 20.2 | 19.1 | 18.0 | 8.6  | TPR    |
|    | 165  | 165  | 185  | 185  | 200  | 147  | 115  | 185  | 124  | 124  | 230  | 165  | 147  | 124  | 147  | 124  | 95   | 180  | 124  | 230  | 170  | 124  | 116  | 93   | 95   | 40   | Grains |
|    | 980  | 1130 | 1090 | 1130 | 1010 | 1010 | 1300 | 1080 | 1460 | 1289 | 890  | 1028 | 996  | 1234 | 1110 | 1180 | 980  | 1030 | 1140 | 825  | 940  | 1100 | 1088 | 1160 | 1050 | 1200 | ft/sec |
|    | 352  | 467  | 488  | 524  | 453  | 333  | 431  | 479  | 586  | 457  | 404  | 387  | 323  | 419  | 402  | 383  | 202  | 424  | 357  | 347  | 333  | 333  | 305  | 278  | 232  | 128  | KE     |
| ٦/ | 162  | 186  | 202  | 209  | 202  | 148  | 150  | 200  | 181  | 160  | 205  | 170  | 146  | 153  | 163  | 146  | 93   | 185  | 141  | 190  | 160  | 136  | 126  | 108  | 100  | 48   | PF     |
| ľ  | JHP  | FMJ  | FMJ  | FMJ  | FMJ  | JHP  | FMJ  | JHP  | FMJ  | FMJ  | FMJ  | EFMJ | JHP  | FMJ  | LM     |

Displayed bands of performance were determined by...

- Error budget calculations to determine the precision of the model
- Comparison to historical P(i) precision (.3 pts)
- Comparison to products used by OGA and deemed "effective"





**Interactive Trial** 



Run audience-fed examples

(AT RDECOM BOOTH)

# Tasks / Schedule



|                                                                | 2nd QTR<br>FY16 | 3rd QTR<br>FY16 | 4th QTR<br>EV16 | 1st QTR<br>FY17 | 2nd QTR<br>FY17 | 3rd QTR<br>FY17 | 4th QTR<br>FY17 |
|----------------------------------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Yaw History                                                    | 1120            | 1110            | 1120            | 1127            | 1127            |                 | 1127            |
|                                                                |                 |                 |                 |                 |                 |                 |                 |
| Hole size validation                                           |                 |                 |                 |                 |                 |                 |                 |
| Low velocity hole size                                         |                 |                 |                 |                 |                 |                 |                 |
| High velocity hole size                                        |                 |                 |                 |                 |                 |                 |                 |
|                                                                |                 |                 |                 |                 |                 |                 |                 |
| Fragmentation vs Expansion (validation)                        |                 |                 |                 |                 |                 |                 |                 |
|                                                                |                 |                 |                 |                 |                 |                 |                 |
| Rifle velocity spectrum <u>calibration</u> & <u>validation</u> |                 |                 |                 |                 |                 |                 |                 |
| Higher velocity impact                                         |                 |                 |                 |                 |                 |                 |                 |
| Fragmentation                                                  |                 |                 |                 |                 |                 |                 |                 |
|                                                                |                 |                 |                 |                 |                 |                 |                 |
| Packaging                                                      |                 |                 |                 |                 |                 |                 |                 |
| Software Language & Interface Design                           |                 |                 |                 |                 |                 |                 |                 |
| Security & Distribution                                        |                 |                 |                 |                 |                 |                 |                 |
|                                                                |                 |                 |                 |                 |                 |                 |                 |

RDECOM



# Summary



- Objective: Create a model that allows industry to estimate terminal performance in a manner that separates hit from damage, while maintaining adequate correlation to Army requirements
- Current Tissue Damage Model (TDM) version is validated for "lower velocity" projectiles only.
- Version two is intended to work in all mass/velocity/Lethal mechanism regions.
- JSSAP funding the creation of version 2.
- 1 year effort lead by ARDEC and supported by ARL to end 4<sup>th</sup> QTR 2016 to finalize TDM model
- Seeking release to industry by 3<sup>rd</sup> QTR 2017
- Hit probability, among other system characteristics, need to be evaluated in any selection process. This model is for terminal performance, ONLY. The author suggests a quality requirement document contain *damage*, *hit* and *probabilistic metrics*, tied together.
- Seeking participants to assist in validation and comparison to other standards