



59<sup>th</sup> Annual Fuze Conference 2016 May 3 - 5, 2016 Charleston, SC



Design evolution of setback generators – based on the increased demand of energy

Michael Faber (RWM)

Dr. Stefan Lauer (RWM) / Dr. Robert Hüttner (RWM)

# **Company history RWM Zaugg AG (Switzerland)**



1963 Company founded by S. & R. Zaugg.
Location: Derendingen

1972 Transformation to a Limited Company.
Trade name is "Zaugg Elektronik AG"

1973 New location Lohn-Ammannsegg

Spin-off "Motor control business"

→ Focus on defense business

Acquisition of the fuze division from EMS-PATVAG AG

Management buy-out

Rheinmetall acquires 100% of the company.

New trade name is "RWM Zaugg AG"

# RWM Zaugg AG, CH-4573 Lohn Ammannsegg, Switzerland

We are located in the Heart of Swiss Watchmakers (Swatch / Breitling / Rolex)



Year of construction:

1973

Floor space:

1'340m<sup>2</sup>

**Building volume:** 

3'954m<sup>3</sup>

**Covert area:** 

2'000m<sup>2</sup>

**Expansion land:** 

1'954m<sup>2</sup>



#### **Portfolio:**

- High-g and energy independent fuzes
- Setback Generators
- 40 mm low, medium and high velocity fuzes
- Programmable fuzes
- High-g electronics
- Manufacturing and development competences









# Setback Generators for medium and large calibre

- Medium and high-g applications
- For 30-35 mm, 40 mm and 120 mm calibre
- High energy content
- No additional energy source required





# **Setback Generators**





#### Specifications of Zaugg Set-Back Generators:

| Characteristics         | GEN-15.200               | GEN-20.200                          | VELAN.270                | RTF 1147    |
|-------------------------|--------------------------|-------------------------------------|--------------------------|-------------|
| Maximum voltage [V]:    | 25                       | 15/60                               | 15                       | 16          |
| Temperature range [°C]: | -54 till +71             | -46 till +63                        | -46 till +63             | -32 till 63 |
| Maximum energy [mJ]:    | 9.4                      | 6.53                                | 7.65                     | 8.7         |
| Size [mm]:              | Ø 15.05 x 8.43 (15.63)   | Ø 19.55 (29.8) x 12.05              | Ø 10.9 x 20.8            | Ø 11.9 x 26 |
| Weight [g]:             | 7.156                    | 15.62                               | 3.38                     | 6.6         |
| Electrical interface:   | Storage capacitor: 30 µF | Storage capacitors: 5.25 µF / 3.3µF | Storage capacitor: 68 µF | 5           |
| Mechanical interface:   | Ø 6.4 mm                 | Ø 6.4 mm                            | none                     | none        |
| Functional parameters:  | Requested                | ≥ 13000 g                           | ≥ 700 g                  | ≥ 13'000 g  |
| Typical applications    | Customer specific        | Customer specific                   | 40mm infantery           | 120m tank   |

**Need for Energy constantly claimed!** 







201 Battery







There is a constant need for small **Energy Power Systems!** 





US-Patent

H. Wich, Energy Source Conf. 2014: Alternative Energy source 50-100mJ range



Fuze Conf. 2014: "Quo Vadis Fuze (Power) ?"



# A look back in 'history:







From: "Handbook on Weaponry", Rheinmetall 1977

Capacitors

Used only for load accumulation

# What is used until today? Has something changed?

**Reserve Battery** 

**Medium Primary Cell** 

**Setback Generator (electromagnetic)** 

Piezo Setback Generator

**Wind-Generators** 



- → No! All items mentioned in the handbock from 1980 are unchanged! No new technologies in service.
- → New technologies had been worked in that decades. A lot of them could not be applied due to the severe environmental requirements of fuzes or they are yet not ready for industrialization

#### A Renaissance for setback generators?





#### **Technical parameters of setback generators**

Energy densitiy
 As high as needed by electronics, sensors, ignition; setback generator: <10mJ</li>
 No system known about 10mJ! Typical: 2-3 mJ

Space requirements As low as possible, disadvantage: High dead volume due to displacement of magnet

■ Activation mechanism Why? → Stanag: No "stored Energy" → Activated by setback, advantage: reliable, disadvantage dependent on acceleration curve

Duration of supply energy should be provided for typical combat distances,
disadvantage: energy is supplied by a short pulse -> energy
storage (capacitor) is needed

Hardness against environmental stress (esp. shock) can relative eaily be achieved

System SafetySystem Safety must not be reduced by energy source

Maintainability not necessary – infinitive lifetime

Costs and availability definitively no off the shelf product – high IPR level requ.



→ Setback Technology still provides valuable benfits!

# Design evolution of setback generators



#### Function principle of a setback generator

$$U(t) \sim -\frac{d\Phi}{dt} \sim vmag$$



Static state: Setback magnet is hold by magnetic force.



# **Design evolution of setback generators**



#### Question: How can the achieve an optimization?



- Travel path of the magnet can be increased! In the example the magnet stops before leaving the coil completely.
- Vent duct in cap to avoid any low pressure area which retards movement of setback magnet. In the example there is only a vent duct at the end.
- Holding mechanism/retention force of setback magnet to be adapted to expected acceleration. In the example the setback magnet is hold by magnetic force.
- Adaptation of the electric circuit for storing an optimized amount of energy in the capacitors

For these optimization items methods and tools were developed.

# **Design evolution of setback generators**



#### Comparison of different acceleration curves



# **Example setback generator RTF1147 tank fuze**



#### Energy concept: use of an specifically optimized set-back generator





With respect to the acceleration, inertia and the rate of time distance equations the voltage achieved from a munition with shown acceleration curves is too low.

-> Optimization is necessary: Lift of holding force of magnet can bring desired effect



# **Optimization Setback Generator**

- Significant increase of holding force by crash pin (safety bolt)
- Tool for design and calculation of setback generators was created
- Modified setback generator continuously tested in self financed development program with support of EMI and EZO









15

Modified setback generator

Modified magnet with holding screw

# **Development tools for setback generators**

Ability to simulate design effects on setback generators **enabled quick technology push in actual running activities/projects**  $\rightarrow$  easy software tool on Excel basis!



#### **Measurements & Results**

# Comparision of measurements and simulation results

- small phaser shift can be observed
- amplitudes relate verv well



#### Result



→ An energy amount between 7-9 mJ were reached and validated under real firing.

(up to 150% more)

This is remarkable!

# Summary



- Chosing or adapting any setback generator off-the-shelf only in order to fit the actual fuze design is not sufficient
- In order to obtain an optimized energy output, setback generators must be adapted to the application in relation to
  - accelaration during firing (Input)
  - Voltage Output
  - optimal design
- Tools were created to optimize these parameters with regard to the application
- Setback generators are still a viable power source for a many fuze applications



Thank you very much for your attention!

#### **POC**

#### Point of Contact:

Dr. Robert Hüttner

Head of Business Unit Fuzes

+49 5827 80-6923

+49 173 286 2250

robert.huettner@rheinmetall.com