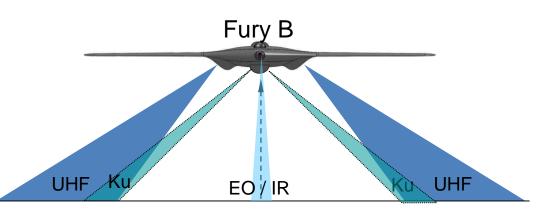
Novel Sensor Miniaturization Methods

Dr. George Pappas



APPROVED FOR PUBLIC RELEASE

Airborne IED Detection

- Sensors
 - Ku-Band Radar Coherent Change Detection
 - UHF-Band Radar Command Wire Detection
 - Ultra Wide Band UHF Radar Buried Objects
 & Command Wire Detection
 - Hyperspectral Imager Disturbed Earth
 - EO/IR Change Detection
- Requirement
 - Increase Pd and Reduce Pfa
 - Decrease Cost of Operations
- Approach
 - Deploy Orthogonal Sensors
 - Deploy Sensors on UAVs
- Miniaturization
 - Ku, UHF, Ultra Wide Band UHF have been miniaturized
 - Need Miniaturized Hyperspectral and EO/IR Sensors

- Full Spectrum Requirement
 - Visible, Near IR, Short Wave IR, & Long Wave IR
- Long Wave Infrared
 - Cooling Requirements Temperature Reduction Required to Sense in Range Required
- Resolution
- EO/IR Sensor Issues:
 - Resolution

4 Band Long Wave Sensor

Weight7.5 lbsGimbal Diameter7"Spectral Band7.5-11.5 um

PBIED, VBIED Detection

- Multiple Sensors are Possible for Checkpoint Operations
 - Metal Detectors
 - Infrared Imagers
 - Terahertz Imagers
 - mm Wave Sensors (active, passive and polarimetric)
 - Magnetic Field Sensors
 - Non-Linear Junction Detectors
 - Acoustic
 - Nuclear Quadrupole Resonance (NQR)
 - X-Ray
 - Insurgents Generally Avoid Checkpoints
- Small Sensors are Required for Covert Sensor Emplacement and Detection by Dismounted Personnel, e.g.,
 - Small, Body Worn Thermal Imager for PBIED Detection
 - NQR Sensors for VBIED

Booby-Trapped Structures

- Various Emplacement Techniques

 No Single Sensor Adequate
- Robot or Dismount Operated Sensors
- Possibilities
 - Thermal Imager to Find IEDs Emplaced in Surfaces
 - Robot to Activate Pressure Plates
 - Robotic Manipulator to Move Possible Booby-Trapped Objects

Hand Held Buried IED Detection

- Current Systems
 - Ground Penetrating Radar
 - Metal Detectors
 - Command Wire Detectors
- Possible Systems
 - Non-Linear Junction Detection
 - Short Wire Detection
 - Hyper/Multi Spectral Imaging
- Goal Combine as Many Functions as Possible in a Lightweight System

Standoff Detection

Dr. Penny Polak-Dingels Contractor Scientist

APPROVED FOR PUBLIC RELEASE

- Consider three different scenarios where IEDs could be deployed
- Need to develop sensors to protect against these threats from a standoff distance (distance at which the threat can be identified without any danger to the operator)

Detect PBIEDs in different situations

There is a need to screen persons at public events.

Sensors can be placed along streets to detect threats.

Suicide Vest

IED hidden in backpack

Various sensors can be used for detection.

- mm Wave imaging
- Metal detectors
- Infrared Detectors
- Chemical detectors (trace and bulk)
- X-ray scanners
- Biometric sensors

Detect VBIEDs at a Standoff Distance

Need to identify VBIEDs in city traffic.

- Chemical detectors
 - NQR
 - X-ray backscatter systems
 - Identification of possible threat vehicles
 - Biometric sensors

Results of a VBIED attack along a street.

Detect HBIEDs or Booby Trapped Structures (BTS)

Command Wire IED

IEDs can be hidden inside buildings set to trigger upon entry.

- Radar systems
- Robots that survey building interior with sensors for IED detection
- Remote controlled cameras
- Identify IED components in surrounding area
 APPROVED FOR PUBLIC RELEASE

- There is no current sensor or system of sensors that is 100% effective.
- JIDA will consider new sensors or combination of sensors that improve the capability to detect IEDs.

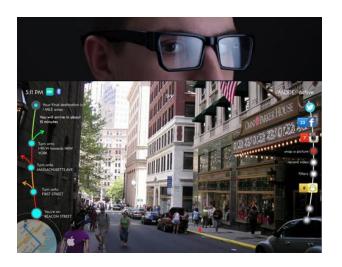
Novel CIED Techniques: A Short Story

Dr. Hatcher Tynes Contractor Scientist

APPROVED FOR PUBLIC RELEASE

Duh...

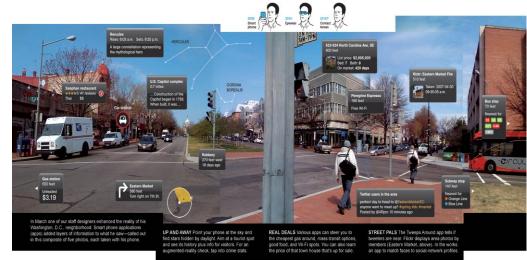
- IEDs aren't going away any time soon
 - Easy and cheap to build and employ
 - -Hard to detect and defeat
 - They're effective
 - They're IMPROVISED
- Bad guys move faster than we can
 - Little to no bureaucracy or "process"
 - Real time laboratory: the battlefield


Think outside the box

"Low hanging fruit" has been picked so...

We need novel ways to get after the problem

Augmented Reality and Virtual Reality


- Enhance/improve situational awareness
 - Indicate previous events and incidents
 - Locations of potential trouble points
- Navigation, scene analysis
 - Overlay & identify features, landmarks
 - Detailed directions

See the world with "info-colored" glasses.

Alerts & information overlaid onto scene.

Amplify scene with info on objects, places.

Key enabler

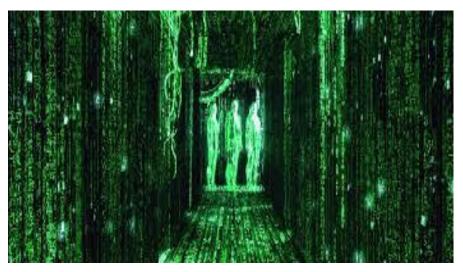
Observe, inspect, analyze remote objects and scenes virtually

Immersive remote robot control

On-the-spot translator

Training & mission simulation; review prior missions

Target identification and engagement



Tag & ID items & places virtually

- Training & mission simulation
 - Learn to identify targets
 - Practice mission execution, new TTP & CONOPs
- Review prior missions
 - Area of interest; event types
 - Lessons learned

- Show information, tags left by other "friendlies"
 - Device types found & most likely TO BE found
 - Setup, emplacement, location
 - Previous enemy TTP
 - What to do about it?


Re-create & explore a scene virtually

Novel Robotic Solutions

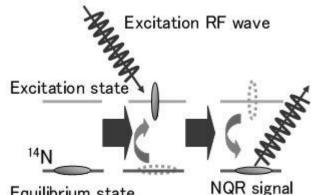
- Humanoid robots with capabilities similar to humans
 - Manipulating, handling devices & materials
 - Better access to areas, places that current robots can't get to
 - Extracting, defeating emplaced devices
 - Options for lab exploitation, examination
 - Reduce risk to humans
 - Coupled with AR/VR

Novel Robotic Solutions

- Fully robotic "critters" with capabilities similar to animals
 - Access areas that existing robots can't
 - Remotely inspect target areas and devices
- Robotically augmented & controlled "critters"
 - Take advantage of some of nature's best sensors
 - Natural-born movers with capacity to learn
 - Adaptable

A Prime candidate to transform the problem space

• Who wouldn't want a robot that turns into a vehicle?



Nuclear Quadrupole Resonance (NQR) for detection

- Enables sensing through non-metallics
- Technique is specific to chemistry of explosive
 - Not all explosives have an NQR signature
- Signal can be small & difficult to detect
 - Susceptible to interference from other sources Equilibrium state
- Not much in the way of stand-off
 - Must be practically right on top of target

Battery Defeat

- IEDs need power to work
 Most use some type of battery
- Drain, disable or destroy battery

 Regardless of size, design or type
 Without knowing location
- How do you do it?
 - Early discharge
 - Heating
 - -???
- How do you know you've succeeded?

Questions?

Standoff Neutralization

Dr. Ben Clough

HELPING WARFIGHTERS ADAPT

APPROVED FOR PUBLIC RELEASE

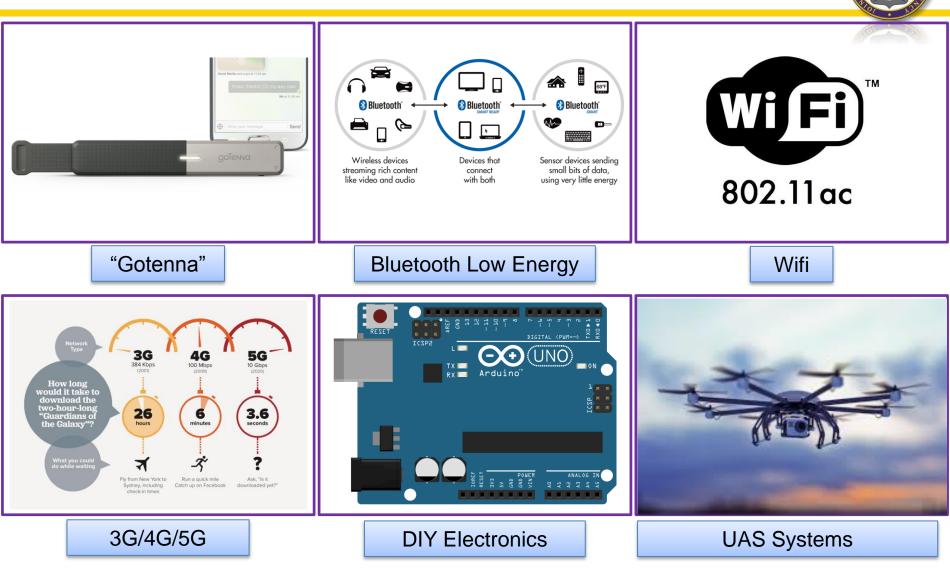
Problem Space

- Detecting IEDs has proven extremely difficult
- We'd like to neutralize them reliably
 - -Without having to detect them
 - From as far away as possible
 - Regardless of configuration, construction, concealment
- Scenarios include
 - Dismount protection
 - Deliberate clearance
 - Incoming vehicle-borne devices

How we define neutralization: Preventing an IED from functioning as intended

What's the problem then?

Physics kicks you in the backside


- To get stand-off requires projecting something – Types of energy
- What you don't know can kill you
 - Devices are IMPROVISED; don't know what's in the box
 - Have you "duded" it? Does this make things worse?
 - Typically little to no characterization data
 - What's in the box?
 - How does it all work?
 - Where'd they put it?

What do we know?

- IEDs all have the same basic components
 - Main charge
 - Container/casing
 - Trigger
 - -Initiator
 - Power source
- May have additional components
 - Radio control mechanisms
 - Sensors measuring different effects (light, pressure, time, etc.)
 - Timing circuits or other electronics
 - DIY Electronics or other electronics leveraging rapidly maturing COTS technologies

COTS Technologies

How do we keep ahead of rapid advancements in COTS technology?

What don't we know?

- What's out there in the environment
- How it's built and what's in it
- Where it is
- How big it is
- How it works
- What it takes to make it "go"
- What it takes to "break" it

Prominent Capability Gaps

- How do we neutralize a device effectively from a standoff distance?
- Can we do it with what we have?
- How do we get energy into a device or key component?
- How can we Neutralize from a dismounted position?
- How can we keep up with the pace of COTS technology evolution?

There are numerous opportunities for improved material solutions

Ideas for Improved Neutralization Capability

- Improved & rapid understanding of surrounding spectral environment
- Visualization of rapidly maturing electronic technologies on the market (ECM, DIY Electronics, next generation wireless communications)
- Improved counter-electronic warfare system capabilities (modularity and software-defined updates)
- Improving management of the "power budget"
- Reduced size, weight, & power (SWAP)

Improving Standoff Neutralization Requires Creative Solutions

