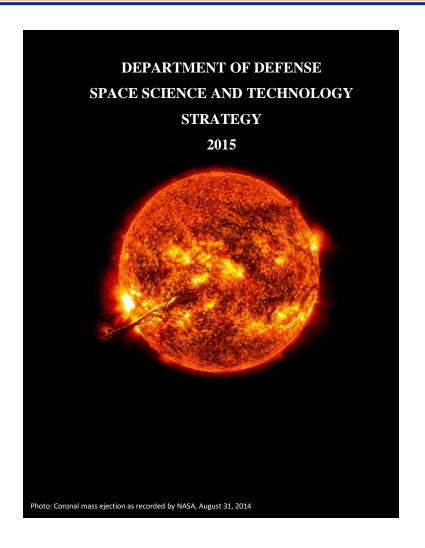


DoD Space S&T Community of Interest Presentation to NDIA S&T Conference 13 April 2016


Dr. John Stubstad Space S&T COI Chair

Office of the Assistant Secretary of Defense for Research and Engineering

DoD Space S&T Strategy

- Report to Congress updated 2015
- Guides the development of the space-unique technologies that are essential to maintain existing U.S. conventional and asymmetric military advantages enabled by space systems at the strategic, operational, and tactical levels
- Looks across the entire DoD Space S&T Enterprise
- Prepared with the assistance of the DoD Space S&T Community of Interest

Space is no longer uncontested

Space Threats

Threat
RF Jamming
Low power laser dazzling
High Power Laser Kill
LEO ASAT
GEO ASAT
On-Orbit Jammers
Co-orbital kinetic ASAT
Adversary attachment
Cyber attack
Space nuclear detonation

Capabilities needed to deliver the Threats

Capability
Ground surveillance networks
World-wide ground SSA coverage
Precision Tracking capability

- In last 5 years, potential adversary threat capability has sharply increased.
- National Space Policy (2010): We will protect our Space Capability from adversary hostile actions.

Space S&T COI Portfolio Overview

COI Description

The goal of the Space COI is to 1) Facilitate
collaboration and leveraging of complementary
investments of the space S&T efforts across the
community in support of the intent of the nation's
Space interests; and 2) Identify gaps, establish and
maintain a set of S&T roadmaps to guide Space
Community research program investments, perform
portfolio assessments, and provide future resource
recommendations to leadership

COI Purpose

 The Space S&T COI is a forum for sharing new ideas, technical directions and technology opportunities, jointly planning programs, measuring technical progress, and exchanging advances in space S&T

Portfolio Focus

 DoD S&T investments in space-unique technologies that are essential to maintain and advance existing U.S. conventional and asymmetric military advantages enabled by space systems at the strategic, operational, and tactical levels

COI Taxonomy

Technology Sub-Area 1 **Satellite Communications** Technology Sub-Area 2 Missile Warning, Missile Defense, Kill **Assessment and Attack Assessment** Technology Sub-Area 3 **Positioning, Navigation and Timing** Technology Sub-Area 4 Intelligence, Surveillance and Reconnaissance Technology Sub-Area 5 **Space Situational Awareness** Technology Sub-Area 6 **Space Access** Technology Sub-Area 7 **Space and Terrestrial Environmental Monitoring** Technology Sub-Area 8 **Command and Control; and Satellite Operations** Technology Sub-Area 9 **Space Enablers** Technology Sub-Area 10 **Space Control and Space Resilience**

Space COI Sub-Areas

Satellite Communications

Technical Challenges

- Reduce SWaP-C and improve thermal management
- Develop V/W band RF and laser comms

Missile Warning, Missile Defense, and Attack Assessment

Technical Challenges

- Improve sensors for whole-Earth staring
- Improve data fusion algorithms

Positioning, Navigation and Timing

Technical Challenges

- Improve anti-jam capability
- · Improve atomic clocks
- Enhance orbital navigation technology

Intelligence Surveillance and Reconnaissance

Technical Challenges

- Increase persistence of ISR
- Improve data compression
- Integrate space, air and ground based ISR

Space Situational Awareness

Technical Challenges

 Improve space object detection and monitoring of potential threats

Space Access

Technical Challenges

- Reduce cost and time cycle
- Higher performance on-orbit propulsion
- Enable fully reusable launch systems

Space and Terrestrial Environmental Monitoring

Technical Challenges

- Improve awareness of Earth/Sun environment
- Enable real-time threat warning due to weather
- Enable marine Meteorology and ocean conditions

Command and Control; and Satellite Operations

Technical Challenges

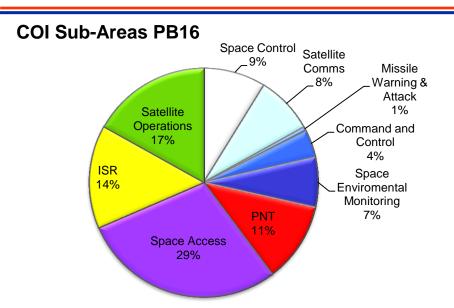
- Increase autonomy to reduce manning
- Space robotic capabilities for servicing/repair

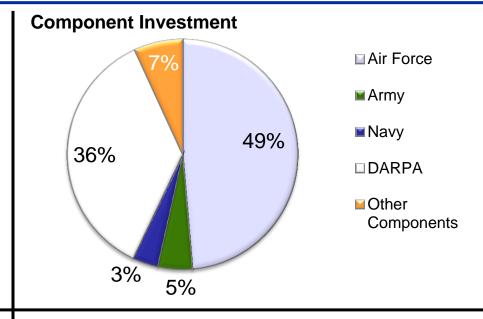
Space Enablers

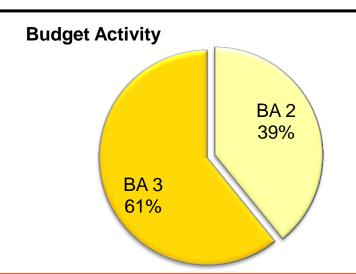
Technical Challenges

- Standardized and miniature components and interfaces
- Carbon-based nanotechnology
- Ultra-high efficiency power systems

Space Control and Space Resilience


Technical Challenges


- On-board adaptive planning
- Local area imaging sensors
- · Laser survivability

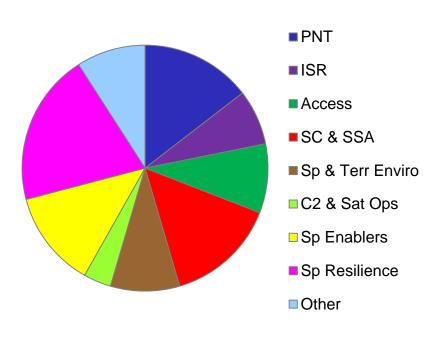


Space S&T COI Investment and Performers

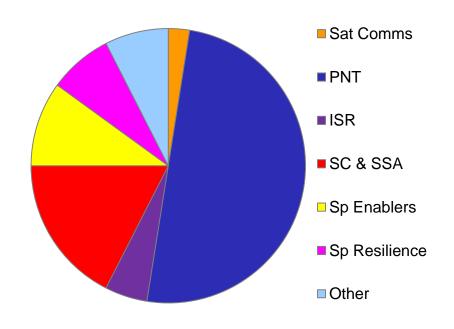
Intramural vs. Extramural split:

- Army 6.2 47/53; 6.3 38/62
- Navy 6.2 60/40; 6.3 40/60
- Air Force 6.2 48/52; 6.3 20/80

Major Performers:


Aerojet-Rocketdyne, APL, BAE Systems, Ball Aerospace, Boeing, Dynetics, Honeywell, Lockheed Martin, MIT-LL, Northrop Grumman, NRL, Orbital/ATK, Raytheon, Sandia National Laboratory, Teledyne Brown

SBIR Investment FY15 Phase I and II Awards



55 Awards

FY15 Phase II

40 Awards

Space COI Relationship to Kill Chain

Gaps

Understanding Allied Investments

- NATO countries
- Long-term Allies & partners
- Other cooperating nations

Understanding Investments of Potential Rivals

- Intent, Doctrine, ROEs & TTPs
- Technical performance of systems

Understanding Benefits and Risks of Employing Commercial Systems

- Security, availability, responsiveness
- Cost, limitations

On-Orbit Servicing & Repair

– What's next?

Trade-off: Cost v Schedule v Lifetime

- 10+ year on-orbit lifetime = high first cost but long replenishment schedule
- Other paradigm short life = low initial cost but short replenishment schedule
- Which paradigm is the future?

Current Challenges Driving Space S&T Investments

- Cost-effective manufacturing and acquisition of spacecraft
 - Very few spacecraft (~3/year)
 - Highly specialized payloads required
- Lower launch cost
 - Reducing overall launch cost and cycle time
- Adding protection and resiliency to our current space fleet
 - Avoiding expensive block upgrades
- Low data rate comms to dispersed units
- Cost-effective sustainment of existing constellations
- Improve ability to remotely measure sea-surface height and ocean surface vector winds to support navy oceanographic models
- Expanding LEO beyond experimentation to Warfighter capability
- Cyberspace awareness threats and mitigation
- Smart leveraging and use of Commercial Space
 - Can we match the Commercial Industry speed of business?

Risks for Space S&T

Investing ahead of others and converse

- Many nations now acquiring space-based capabilities including development of indigenous capabilities
- Commercial systems offering ISR services
- Cubesats are good low cost test platforms and capabilities
- Cubesats are bad low cost enable many to test & develop space capabilities that were cost prohibitive in the past
- Protecting existing operational satellites

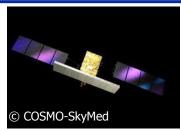
International collaboration

US space S&T collaboration with international partners continues to increase

Classifications

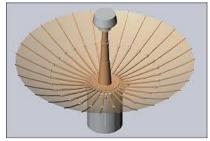
- US space S&T conducted at multiple security levels
- No affordable responsive launch options exist today




S&T Opportunities

- Exploiting expanding commercial space
- Ever growing and lucrative commercial satcom and ISR
 - markets (GEO, MEO, and LEO)
 - Digital Global Systems
 - TerraSAR-X
 - COSMO-SkyMed

- Wealthy visionaries are investing in space tourism and transportation
- Commercial startups and international entrants are expanding micro and small sat capabilities
 - Future large "micro" & "small sat" constellations
 - SpaceX
 - OneWeb
 - Planet Labs
 - SPIRE
 - Black Sky
 - Skybox

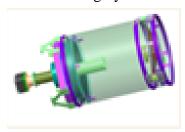

NASA investments are buoying new entrants for orbital and suborbital markets

Army Space S&T Themes

Deployable Antennas

Reliable, High Gain, CubeSat Compatible

Software Defined Radios


Low Size, Weight and Power, High Capacity, Flexible

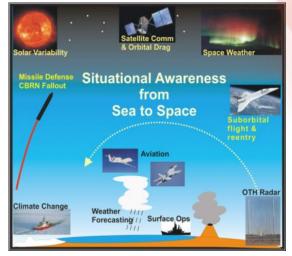
High Throughput

Communication For Forward Forces

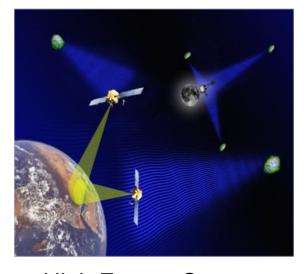
Imagery

IR, Low Light, MSI

Constellation Management


Highly automated, common architecture, optimized planning and tasking

Innovative, Affordable Space Technologies Support Future Battlefield Dominance



Navy Space S&T Themes - Research

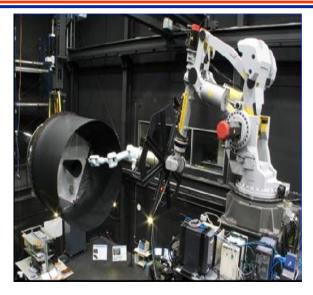
Geospace

Observe and forecast, for enhanced situational awareness

Heliospace

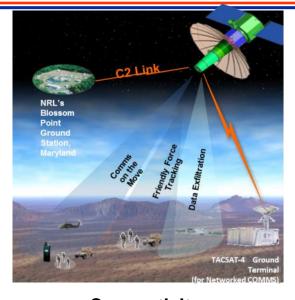
Develop improved sensors, specification, monitoring and prediction tools for operational impacts and real-time threat warning

High Energy Space


Measure, simulate and model natural and artificial radiation and rad/nuke signatures, for detection and remediation

Experimentally-led sensing R&D integrated across three environmental areas that underpin, connect, and inform successful operations, with metrics to increase TRL from 0-1 to 2 and to identify transition potential

Navy Space S&T Themes - Technology

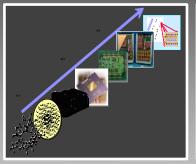

Advanced Spacecraft Technologies

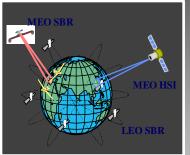
Sub-systems, for new and prototype building-blocks; propulsion & control, towards precision maneuvering while minimizing fuel; materials resiliency characterization

Payloads & Sensing

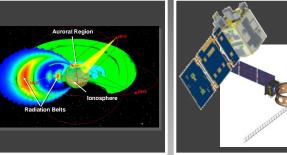
Next-generation, to improve monitoring for threats

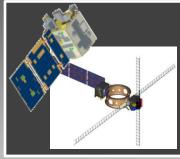
Connectivity


High-bandwidth, space-based, for disadvantaged users


Spacecraft R&D in three strategic areas that lead to the fielding of systems that perform functions critically important to operations, with metrics to increase TRL from 1-2 to 3 and to develop transition pathways

Air Force Space S&T Themes





Space Remote

Sensing

Space Electronics

converters, memory

- Exploitation of collected Space electronics photons (temporal, physics to understand failure modes and spectral, polarimetric)
- improve reliability · New sensors and New space components for missile processors, solidwarning state amplifiers for GPS/Comm, A-D
 - · Detectors, algorithms, optics
 - Nuclear explosion monitoring

Space Platform & Ops Tech

- New technology to support AF-specific missions
- Solar arrays with 8X lower volume
- High-capacity thermal control
- Guidance, navigation
- **Autonomous systems**

Space Environment Impacts & Mitigation

- Models for spacecraft shielding and lifetime
- Anomaly resolution
- Astrodynamics for collision avoidance
- Reentry environment
- Space plasma physics & chemistry

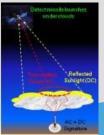
Space Flight **Experiments**

- Space system & payload development
- Integration, test, & flight
- Modeling & simulation
- Space system engineering

Air Force Space S&T Snapshot

Near Term

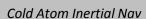
- SSA: Local GEO SSA using ANGELS. Proving close object detection using Ground SSA
- JSpOC: ARCADE Testbed accelerating 10 new Apps
- Protection: Space testing of new tech-insert options.
- <u>Launch</u>: Combustion modeling tools to Industry; Preburners transitioned to NASA Adv Booster Program (ABDERR)



- Hydrocarbon Boost pre-burners
- WGS and Commercial Comm
- JMS Increment 3
- Commercial Launch options

Mid Term

- SSA: ARCADE testbed integrated with JICSpOC for Battlespace management (BMC2)
- <u>Comm</u>: Increase frequency tradespace into the W/V band
- <u>GPS</u>: All-digital, High-power GPS payloads increases anti-jam
- <u>Missile Warning</u>: Detect difficult theater missiles under clouds
- <u>Launch</u>: Ox-rich Staged
 Combustion engine technology



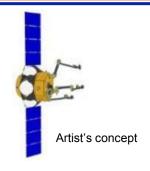
Protected Nuclear Comm (NC3)

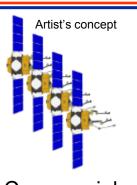
- GPS III SV 9+
- RD-180 replacement option

Far Term

- SSA: Resolved ISAL imaging of GEO satellites using ground telescopes
- GPS: Cold Atom (Quantum)
 Inertial Navigation and clocks
- ISR: Networked tactical sensing between Space & Air domains
- <u>Launch</u>: Low cost,
 manufacturable rocket engines

ISAL GEO image (Simulated)


- BMC2 JICSpOC
- Air-Space integration


SERVICING

DARPA S&T Theme GEO Servicing

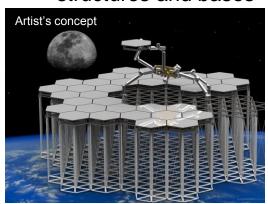


First robotic capability in GEO

Commercial providers expand coverage

Automated, scheduled refueling

LEO-to-GEO space tug


Technology development and investment

- On-orbit replaceable units
 - Modular spacecraft

- Reduced redundancy
- Lightly fueled at launch
- Assembly experiments

Large apertures, structures and bases

Space robotics = national-level growth potential

Overarching Space S&T COI Subarea Roadmap

	15	16	17	18	19	20	21	22	23	24-27
Space S&T Subareas			Disadvantaged is & Users	UH	F / Ka band cor	nms		W and Ka- nd Comms		
- Satellite Communications		<u> </u>	6 }		£63		3	6 }		
	Post In Assessmen	tercept t Capability	OPIR Enterpri							
- Missile Defense and Attack	¥	63 36	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<u><u>16</u></u>						
Assessment			/New MD ations	Improved Futur Space Sensors Next Gen (;	0	4			
- Positioning, Navigation and				User Eq	uipment 1	Space Sys	tems }			
Timing		On-Dema Imag	and EO Improve	Utilization	~		re Knowledge Orbital Objects		Increase Pers	istence
- Intelligence, Surveillance and			₹ <mark>7</mark> }	6.3 			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		£63	
Reconnaissance	E	nvironmental II Technolog		Ground-base Syste			ted Space-, A ound-based	ir-,		
- Space Control and Space		1 100 more	jico	183 193		I			L	
Situational Awareness			Threat Spacecraft Te tems	I&W Software chnologies EELV	Space Access					
- Space Access			£63		3 6 2 E					
		ronment Senso Sun Understan		heric Prediction		Access				
- Space and Terrestrial	Earth-to-\$un Understanding Optinization and Performance									
Environmental Monitoring			e Environment ecraft and Terr		Dobatic (Capabilities				
- Command and Control &			£63		Robotic	apabilities		 		
Satellite Operations		04m 14 11	and Life	rbit Maneuverii Extension	ng	W.		ttonomous Sys		
- Space Enablers		Structural	Components	<u> </u>		1 { <mark>5</mark> }	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.}		
Maturity Maturity TRL 8/9 TRL 6/7 TRL <6 Unfunded		1	ower and Inr Management	ovation		Modeling Simulation				

Army Future Space S&T Trends and Opportunities

- The Space Operational Environment will become increasingly complex over time (both in capacity and capability). Friendly, Coalition, and Threat forces will vie for Space capabilities and seek to deny others
- The future Army Operational Environment (Asymmetric warfare, Mega Cities, non-state operators, etc.) will be increasingly more dependent on tactical Space capabilities in multiple Mission Areas.

Navy Future Space Trends/ S&T Opportunities

- Multi-scale whole-atmosphere prediction of ionospheric effects, emphasis on Arctic and Tropical regions
- Terrestrial gamma-ray flashes observation base and background events modeling
- Characterize celestial pulsar sources for space-based GPS-stressed timing and navigation
- Investigate x-ray space-based communications
- Specification and prediction of geospace, heliospace, and high energy environmental effects for improved HF propagation, geolocation, SATCOM, orbital analysis, geomagnetic ULF resonance, and rad/nuke maritime detection and interdiction
- Imaging of GEO satellites from earth
- Cooperative, automatic space robotic capabilities
- Low-mass and novel active technologies for spacecraft propulsion systems
- Space sensor and analysis tools integrating on-orbit observations with modeling for improved SSA
- Lightweight articulation and sensing integrated space robotics architectures
- Spacecraft propulsion and control capabilities for precision maneuvering while minimizing fuel
- Low Earth Orbit radiation environment characterization payloads

Air Force Future Space S&T Trends

Space Comm:

- S&T to reduce risk on LEO constellation technology to support Air Dominance
- Alternatives needed to AFSCN TT&C

Launch detection

- Near-term AFSPC/SMC focus is on low-cost disaggregation approaches.
- Long-term DoD focus is on tactical missiles. AFRL Hyper-temporal is a major contribution, but gaps still exist.

PNT

- Resiliency needed for GPS space and control segments
- PNT user equipment

SSA

- Leveraging commercial observations (ground and space) crucial to improve persistence
- Key challenges are data trust, fusion, and interoperability with AF operational systems
- Space-based, GEO focused SSA

Space Access

On orbit propulsion

Space C2 & Ops

Leverage commercial systems.

Pervasives

- Protection and Resilience technology
- S&T approaches to accelerate spacecraft manufacturing

DARPA Future Space S&T Trends

Launch:

- Flexible, affordable access
 - Affordable, routine and reliable access to space
 - Aircraft-like space access to lower cost and increase capabilities

Satellite:

- Changing the paradigm of satellite operations
 - New satellite architectures for speed and robustness
 - GEO space robotics to repair and assemble very large satellites that could not be launched

Space Domain Awareness (SDA):

- Real-time space domain awareness
 - Real-time detection and tracking versus catalog maintenance and days to weeks of forensics