Increasing Systems Engineering Effectiveness Through Operational Risk Considerations

Brian Gallagher, Ph.D. Senior Vice President, Operational Excellence CACI, Inc.

CACI EVER VIGILANT

INFORMATION DEPLOYED. SOLUTIONS ADVANCED. MISSIONS ACCOMPLISHED.

Problem Statement

 Many programs fail to address real operational needs when fielding new capabilities resulting in a gap between business and mission needs and operational capabilities.

Two major root causes

- Requirements failed to capture true mission and business needs
- The mission and business needs evolve during development and project team fails to evolve as quickly
- The existence of gaps between operational needs and delivered capabilities increases operational risk.

Example: ECSS Air Force

- Expeditionary Combat Support System (ECSS) began development in 2004
- Program had vague set of objectives
- Lack of clarity in operational needs and the mission and business needs that were being addressed
- Major disconnect between solving critical operational threats and risks versus solving strategic needs (cost reduction, affordability, consolidation, etc.)
- Result: \$1.1B in wasted funding and a system that was not deployable

"The Air Force's Expeditionary Combat Support System, or ECSS., is a prime example of how a system designed to save money can actually waste billions of taxpayer dollars without producing any usable capability." – Sen. John McCain

Example: Improvised Explosive Device (IED) Defeat

- During Operation Iraqi Freedom, IEDs posed a new and real threat
 - Existing capabilities couldn't detect or defeat the threat
 - The military urgently needed new capabilities fast

- Army created the Joint IED Defeat Organization (JIEDDO) with the sole purpose of defeating this new operational risk
 - Ability to bypass traditional acquisition process
 - Fielded less mature, but effective solutions
 - Lives were saved
- Quickly fielded systems lacked certain quality attributes such as robustness, evolvability, and maintainability
- Tactical mission risks mitigated yet strategic business risks ignored: Total Cost of Ownership and Logistical Complexity Increased

Operational Risk to Balance the Need

- The purpose of any new system, component or capability development should be to mitigate operational risk
- During development, operational risk changes
- Systems engineering activities during the project lifecycle should evolve through operational risk considerations

Research Questions

- What techniques can be used to influence Systems Engineering with Operational Risk considerations?
- Does a focus on Operational Risk during the Systems Engineering lifecycle improve program outcomes?

Typical Risk Management

- Acquisition Risk Management During Acquisition Planning and Execution
 - Focus is on programmatic risk
- Program and Engineering Risk Management During Development
 - Identify and mitigate risks associated with cost and schedule
 - Identify and mitigate technical risks associated with technical approach
- Concept of Operational Risk is Lacking

The More Effective Approach

Acquisition Risk Operational Need and Advocacy Predicable Performance Requirements Direction,2 Commitment Team Risk Operational Insight Enhanced Capability/Service Engineering/Service Risk **Operational Risk**

Co

Colorado State University

Gallagher, B.P., *Interpreting Capability Maturity Model Integration (CMMI) for Operational Organizations.* 2002.

Traditional Operational Risk Management

Financial and Banking Industry

• Focused on the goal of reducing the probability of loss due to events such as fraud, mismanagement, system failures, failed investments, or legal considerations.

Jarrow, R.A., *Operational risk.* Journal of Banking & Finance, 2008. 32(5): p. 870-879.

Military Operations

- Focused on the identification and elimination of hazards. A hazard is defined as :
 - "Any real or potential that can cause personal injury or death, property damage or mission degradation or damage to environment"

OPNAV, 3500.39 B.(2004). Operation risk management, 2004.

More General Definition

Operational Risk	The possibility of suffering mission or business loss.				
Operational Risk Management	An operational practice with processes, methods, and tools for managing risks to successful mission and business outcomes.				
	It provides a disciplined environment for proactive decision making to: - continually assess what could go wrong (operational risks) - determine which operational risks are most important to deal with, and - implement strategies to address operational risk				

Operational Risk-Driven Engineering Requirements/ Engineering Development (ORDERED)

ORDERED Risk Taxonomy

0	RDERED Taxonomy
A. MISSION	B. BUSINESS
1. Mission Planning	1. Resource Planning
a. Stability	a. Workforce
b. Completeness	b. Budget
c. Clarity	c. Facilities
d. Feasibility	d. Equipment and Systems
e. Precedents	
f. Agility	
2. Mission Execution	2. Governance
a. Efficiency	a. Policies
b. Effectiveness	b. Procedures
c. Repeatability	c. Organizational Structure
d. Agility	d. Contracts
e. Affordability	e. Analytics
f. Security	f. Compliance
g. Safety	g. Risk Management
3. Mission Outcomes	3. Strategic Planning
a. Predictability	a. Vision and Mission
b. Accuracy	b. Values
c. Usability	c. Goals
d. Timely	d. Objectives
e. Efficient	e. Monitoring
4. Operational Systems	4. Stakeholder Management
a. Throughput	a. Identification
b. Usability	b. Stakeholder Mgmt Plan
c. Flexibility	c. Engagement
d. Reliability	d. Controlling
e. Evolvability	
f. Security	
g. Supportability	
h. Inventory	
5. Operational Processes	5. Continuous Improvement
a. Suitability	a. Problem Identification
b. Repeatability	b. Opportunity Identification
c. Predictability	c. Root Cause Analysis
d. Agility	d. Improvement Planning
e. Security	e. Implementation
6. Operational Staff	
a. Skill Level	
b. Training	
c. Turnover	
d. Affordability	

12

Does a Focus on Operational Risk Help?

Survey of 104 Program Managers

- Examined Risk Process Effectiveness
- Explored the Project's focus on Operational Risk and Quality Attributes during early lifecycle activities and during execution
- Explored project performance
- System Dynamics Model
- Case Study Analysis
 - Developed characteristics of effective operational risk management practices to influence systems engineering
 - Evaluated published case studies against characteristics for successful and challenged programs

Se The National	ervice an					
Th ha ob		1 Solutior	Delivery Ris	k		
	e purpose of ndling activit jectives. Ider	Risk Manage ies may be pl sifying and m	ment is to identify ; inned and invoked itigating risks is crit	potential problems as needed to mitig ical to ensuring del	sefore they occur, so ti ate adverse impacts on livery effectiveness.	hat risk- i achieving
Th exp sol	e purpose of plore the reli lutions and s	this survey is tionship betw envices that m	to evaluate the eff reen a customer's itigate these risks.	ectiveness of Risk & operational or missi	lanagement practices. ion risk, and our ability	In addition, to to deliver
QI	uestionna	ire	(How strongly	do you suppo	t the following st	atements?)
1.	My project	team has a d	currented risk ma	nagement process.		
	Net At Al	A Little	Moderately	Considerably	To A Great Extent	Unknown
	0	0	0	0	0	0
2.	My project	team has an i	uttive risk register t	hat reflects the tea	m's most critical curren	nt risks.
	Not At Al	A Little	Moderately	Considerably	To A Great Extent	Unknown
	0	0	0	0	0	0
з.	My project	team has a ro	bust, continuous ri	isk identification pr	DCRES.	
	Net At Al	A Little	Moderately	Considerably	To A Great Extent	Unknown
	0	0	0	۰ (0	0
4.	My project	team actively	mitigates the proi	ect's top risks.		
	Not At Al	A Little	Moderately	Considerably	To A Great Extent	Unknown
	0	0	0	0	0	0
s.	The leaders	hip above m	project actively el	cits risks and helps	mitigate risks to my pre	oiect.
	Not At Al	A Little	Moderately	Considerably	To A Great Extent	Unknown
	0	0	0	0	0	0
ő.	My project capture ph	team actively	elicited operation	al risks and mission	threats from customer	s during the
	Not At AT	A Little	Moderately	Considerably	To A Great Extent	Unknown
	0	0	0	۰ (0	0

al 1	Engineering	Plans Mitigate Operational Risk
	Specific	Manage Operational Risks
	Practice 1.1	Operational risks, driven by requirements prioritization decisions, are explicitly captured as risk statements and mitigation plans developed.
	Specific	Engineering plans mitigate operational risk
	Practice 1.2	Engineering plans (methodologies, lifecycles, etc.) are developed to mitigate both development and operational risk.
	Specific	Engineering plans are influenced by evolving operational risk
	Practice 1.3	Engineering plans are evolved when mission or business needs evolve.
	Specific	Transition to operations and support plans mitigate operational
	Practice 1.4	risk
	1	Operational risk considerations influence transition to operations and
	1	support plans which are developed or adjusted to mitigate operational
	1	risk.
al 2	Lifecycle eng	ineering activities mitigate operational risk.
	Specific	End-users participate in systems engineering activities by
	Practice 2.1	identifying operational risk
	1	End-users participate continuously during the systems engineering
	1	process by identifying and prioritizing operational risk taking into
	1	consideration evolving mission and business needs.
	Specific	Operational risk considerations validate system requirements
	Practice 2.2	System requirements are developed and validated based on an
		analysis of mission and business threats, needs and operational risk.
	Specific	System requirements balance mission and business needs
	Practice 2.3	Validated system requirements balance short-term mission needs and
		longer-term business needs.
	Specific	Operational risk considerations influence systems engineering
	Practice 2.4	artifacts

Survey Program Characteristics

Program Type

Risk

14

Visibility

Annual Program Value

Risk Survey – Early Results

Results Compared to Similar Studies

Figure 45: SEC-RSKM vs. Perf

"Examination of this chart reveals a moderate supporting relationship between SEC-RSKM and Perf."

Elm, J.P. and D.R. Goldenson, The Business Case for Systems Engineering Study: Results of the Systems Engineering Effectiveness Survey. 2012, DTIC Document. Colorado State University

Program Performance and Operational Risk

Operational Risk Process Effectiveness and

Program Performance

Programs within the sample who focus on operational risk during the program lifecycle also have better program performance than programs that focus less on operational risk during the program lifecycle.

Survey Results – *Solution Development* Programs Only

Risk Process Effectiveness and

Program Performance

Operational Risk Process Effectiveness and

Program Performance

The relationship between Operational Risk and Program Outcomes holds and is even stronger when only Solution Development projects are examined.

Systems Dynamics Model: Operational Risk and Technical Debt

Model Initial Variables							
Variable	Value						
Initial Features	648						
Completed Features	0						
Total Capacity	30						
Op Risk Level	0.2						
Op Risk Effectiveness	0.5						
Cost per Feature	\$1,000						
Technical Debt	0						
Release Cost	0						
Residual Cost	0						
Total Cost	0						

			Ν	/lodel Output	S		
Percentage for	Features	Release	Technical Debt (features) Addressed in the	Release	Residual Technical Debt	Residual	
Mitigation	Completed	Months	Release	Cost	(features)	Cost	Total Cost
0%	648	22	0	\$648,000	129.6	\$3,758,400	\$4,406,400
10%	684	26	36	\$684,000	99.3	\$2,879,700	\$3,563,700
20%	735	31	87	\$735,000	57	\$1,653,000	\$2,388,000
25%	765	34	117	\$765,000	29.25	\$848,250	\$1,613,250
30%	798	38	150	\$798,000	4.2	\$121,800	\$919,800

Characteristics of Effective Operational Risk Focus during Systems Engineering Process

Goal 1	Engineering Plans Mitigate Operational Risk						
	Specific	Manage Operational Risks					
	Practice 1.1	Operational risks, driven by requirements prioritization decisions, are explicitly captured as risk statements and mitigation plans developed.					
	Specific	Engineering plans mitigate operational risk					
	Practice 1.2	Engineering plans (methodologies, lifecycles, etc.) are developed to mitigate both development and operational risk.					
	Specific	Engineering plans are influenced by evolving operational risk					
	Practice 1.3	Engineering plans are evolved when mission or business needs evolve.					
	Specific	Transition to operations and support plans mitigate operational					
	Practice 1.4	risk					
		Operational risk considerations influence transition to operations and support plans which are developed or adjusted to mitigate operational risk.					

Label	Meaning
LOW	The intent of the model practice is judged absent or inadequately addressed in the approach; goal achievement is judged unlikely because of this absence or inadequacy.
MEDIUM	The intent of the model practice is judged to be partially addressed in the approach, and only limited support for goal achievement is evident.
HIGH	The intent of the model practice is judged to be adequately addressed in the set of practices (planned or deployed) in a manner that supports achievement of the goal in the given process context

Lifecycle engineering activities mitigate operational risk.							
Specific	End-users participate in systems engineering activities by						
Practice 2.1	identifying operational risk						
	End-users participate continuously during the systems engineering						
	process by identifying and prioritizing operational risk taking into						
	consideration evolving mission and business needs.						
Specific	Operational risk considerations validate system requirements						
Practice 2.2	System requirements are developed and validated based on an						
	analysis of mission and business threats, needs and operational risk.						
Specific	System requirements balance mission and business needs						
Practice 2.3	Validated system requirements balance short-term mission needs and						
	longer-term business needs.						
Specific	Operational risk considerations influence systems engineering						
Practice 2.4	artifacts						
	Derived and sub-system requirements, architecture, designs, and						
	technical decisions are influenced by operational risk considerations						
Specific	Technical solutions are influenced by evolving operational risk						
Practice 2.5	Technical solutions are evolved when mission or business needs						
	evolve.						
Specific	Operational risk considerations influence technical decisions						
Practice 2.6	Technical decisions to defer or accelerate capabilities during						
	development are made based on a thorough consideration of						

Case Studies Evaluated

- Business Transformation within a Russian Information Technology Company
- The Hubble Space Telescope
- Mission INtegration and Development
- Enterprise Resource Planning (ERP) Systems Implementation at Pharma Inc.
- Titan Survey portion of the NASA/ESA Cassini/Huygens Mission to Saturn
- Denver International Airport (DIA) Baggage Handling System
- The Air Force's Expeditionary Combat Support System (ECSS)
- The Marine Corps' Expeditionary Fighting Vehicle
- New York Subway Communications System

Case Study Results

Successful Programs											
	SP	SP	SP	SP	SP	SP	SP	SP	SP	SP	Score
	1.1	1.2	1.3	1.4	2.1	2.2	2.3	2.4	2.5	2.6	
Case 1	Н	Н	Н	М	Н	Н	L	Н	М	L	38
Case 2	Н	Н	М	М	Н	Н	М	Н	Н	L	37
Case 3	Н	Н	Н	Н	Н	Н	М	М	Н	М	44
Case 4	Н	Н	Н	М	М	Н	М	Н	М	L	38
Average											39.25
Challenged P	rogram	S	-		-	-					
	SP	SP	SP	SP	SP	SP	SP	SP	SP	SP	Score
	1.1	1.2	1.3	1.4	2.1	2.2	2.3	2.4	2.5	2.6	
Case 1	М	L	L	L	Н	L	L	L	L	L	16
Case 2	L	L	L	М	L	L	L	L	М	М	16
Case 3	М	L	L	L	L	L	L	L	L	L	12
Case 4	L	М	L	М	L	L	L	М	L	L	16
Case 5	L	L	L	L	M	L	L	L	L	L	11
Average										14.2	

Summary

- Using Operational Risk considerations during the Systems Engineering lifecycle will increase the likelihood of fielding an operationally effective system, component or capability
- The ORDERED process is a structured approach allowing operational risk to influence systems engineering
- Programs that focus on operational risk during the engineering lifecycle also exhibit better program outcomes

Contact:

Brian Gallagher

bgallagher@caci.com

brian.gallagher@colostate.edu

Questions?

23

Selected References

- Army, ATP 5-19. Risk Management, 2014.
- Aronin, B.S., et al., *Expeditionary Combat Support System: Root Cause Analysis*. 2011, DTIC Document.
- Carr, M.J., et al., *Taxonomy-based risk identification*. 1993, DTIC Document.
- Ellis, R.F., R.D. Rogers, and B.M. Cochran, Joint Improvised Explosive Device Defeat Organization (JIEDDO): Tactical Successes Mired in Organizational Chaos; Roadblock in the Counter-IED Fight. 2007, DTIC Document.
- Gallagher, B.P., et al., A Taxonomy of Operational Risks. 2005.
- Gallagher, B.P., Interpreting Capability Maturity Model Integration (CMMI) for Operational Organizations. 2002.
- Gallagher, B., et al., CMMI for Acquisition: Guidelines for Improving the Acquisition of Products and Services. 2011: Addison-Wesley Professional.
- Jarrow, R.A., *Operational risk*. Journal of Banking & Finance, 2008. 32(5): p. 870-879.
- McCain, J. FLOOR REMARKS BY SENATOR JOHN MCCAIN ON THE AIR FORCE'S ECSS PROGRAM. 2014 [cited 2015 2 August, 2015]; Available from: <u>http://www.mccain.senate.gov/public/index.cfm/2014/7/floor-remarks-by-senator-john-mccain-on-the-air-force-s-ecss-program</u>.
- MCI, ORM 1-0: Operational Risk Management. 2002, United States Marine Corps: Headquarters Marine Corps, Washington DC.
- OPNAV, 3500.39 B.(2004). Operation risk management, 2004.
- USAF, Pamphlet 90-803 RISK MANAGEMENT (RM) GUIDELINES AND TOOLS, U.S.A. Force, Editor. 2013.

