

The Shape of Uncertainty in Systems Engineering Peer Reviews: Requirements Versus Design Activities

Paul D. Nugent, Ph.D.

Ancell School of Business
Western Connecticut State University
Contact: nugentp@wcsu.edu

Uncertainty in Organization Theory

- Neoclassical Economics
 - No uncertainty, optimal decision-making
 - All options identified
 - Utility maximization
- Organizational Economics (Coase, 1930s)
 - Why are transactions organized in hierarchies rather than markets?
 - Role of uncertainty and efficiency of "administration by fiat" for certain kinds of transactions
- March & Simon (1950s)
 - Costs of resolving uncertainties too high
 - Bounded rationality, satisficing
- Institutional Economics (1970s)
 - Transaction Cost Economics (TCE) markets, contracts, hierarchies
 - Opportunism, uncertainty, asset specificity
 - Agency Theory
 - Adverse selection (observability of beliefs)
 - Moral hazard (observability of behaviors)

Uncertainty in Organization Theory (cont.)

- Stinchcombe (1980s)
 - Uncertainty X importance -> unique organizational structures
- New Institutionalism
 - Legitimacy
 - Stakeholders rely on proxies for organization's status
- Organizational Culture
 - Strong cultures reduces uncertainty from top-down
 - Negative effects (politics, ambiguity, anxiety)

Uncertainty in System Design

- System Development Lifecycle (SDLC)
 - What (requirements)
 - How (design)
 - Uncertainties expected to be resolved prior to next step
- Agile
 - Explicit acknowledgment that uncertainties may not be adequately resolved prior to next step
 - Iterative approach adding more detail at each iteration
- "Cone of uncertainty"
 - Market, technology, project (scope, budget)
 - Uncertainty attenuates through time
- Quality Control
 - CMMI, Six Sigma apply Statistical Process Control (SPC) principles to monitor variation in <u>design processes</u>

Original Research Question

• What uncertainties are represented in the systems engineering design activities as reflected in engineering peer review artifacts?

Data Set

- Defense Contracting Company in New England
 - Trident fire control systems, D₅ missile guidance systems
- ~1200 employees, mostly systems engineers
- 21 peer reviews
- Approximately 157 comments per review on average
- Applicable data fields
 - Comment
 - Resolution
- Access data base
- Comments phrased as <u>questions</u>

Method

- Qualitative (ethnographic)
- "coding" in database
- Allows patterns to emerge from data

Analysis

- Objects of uncertainty?
- Emergent codes (in order of volume)
 - Document
 - Template/rules
 - Ontology
 - legacy and future system (requirements/design)
 - Language
 - grammar, acronyms, labels, words
 - Linking
 - tracing/allocating between documents

Analysis (cont.)

- Discussion
 - Complexity of the documentation process
 - Ontology what the future system needs to be
 - Philosophy of technology only deals with existing systems
 - Language
 - Localized language that is in flux
 - Wittgenstein ("Linguistic Turn" in social sciences)
 - Tracticus (single objective building-blocks)
 - Philosophical Investigations (contextual, understanding)
 - Language games, family resemblances

Subsequent Analysis: Requirements versus Design

- Expectation was that the uncertainty over the ontology (future system) would separate cleanly into
 - What? For requirements specifictions
 - How? For design documents
- Surprised that these kinds of uncertainties were found in roughly equal volume for both requirements and design

Ontology of a future system

- Extremely complex system
 - Elephant analogy
- As expected, some uncertainties are tied to requirements or design
- However much of the uncertainty revolves whether reviewing requirements or design tend to center on the same things
 - What is the system given what has been documented or agreed upon by the customer, technical authorities, and subject-matter experts?
- Documentation intends to capture the baseline system, but a great deal of it exists in shared political and social understandings

Discussion

- Professionals draw from an abstract body of knowledge to diagnose and treat/solve problems
- Engineers learn various methods for requirements definition and design/architecture
- But for highly complex systems, it is knowledge of the uniqueness of the system that is most valuable and imposes the greatest uncertainty
- Systems engineering as a unique kind of profession
 - Both create and need to understand highly unique complex systems

Discussion (cont.)

• Systems engineering as a unique kind of profession

hig Uniqueness	HW engineeringSW engineering	Systems engineeringSome sciences
low	Non-professional occupationsE.g., trades	LawMedicineNatural Science

low

high

Complexity

Questions?