

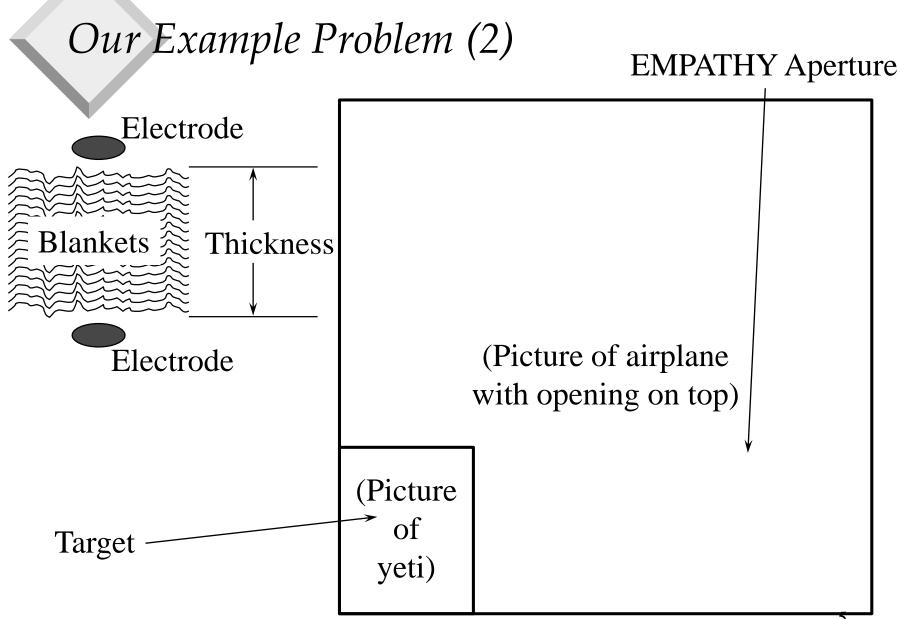
The Three-Phase Optimal Design Test Meets Reality: Lessons Available, Part Two Becki Amendt John F. Fay **Gregory Hutto Douglas Ray David Hartline** Kevin Diggs James Moore **DISTRIBUTION STATEMENT A.** Approved for public release;

1

distribution is unlimited. 96TW-2016-0186

Presenting Author

Dr. John F. Fay 850-883-2105 Odyssey Systems Consulting Group john.fay.3.ctr@us.af.mil


Outline

Our Example Problem

- The Three-Phase Optimal Design Test
- Issues and How to Cope With Them
 - ◆Data Range
 - ◆ Limited Precision
 - Specified vs. Actual Test Points
 - ♦ End of Test

Fictitious Weapon: Electro-Magnetic Pulse Against Thoroughly Hostile Yetis

- ◆ Two high-voltage electrodes
- Separated by stack of insulating blankets
- ◆ Thicker stack → better chance of enough insulation between electrodes → better chance that charge does not bleed off slowly → better chance of electrical discharge when needed
- Need thickness of stack required to give 99.99% chance of discharge at 95% confidence level

The Three-Phase Optimal Design Test

We have an input

• Varies continuously – thickness of stack

We have an output

- One or zero success or failure on or off discharge or no discharge
- Probabilistic function of input
 - The same input can give different outputs in different tests
 - Probability of a one increases as input increases

The Three-Phase Optimal Design Test (2)

- Invented by
 - Jeff Wu of Georgia Institute of Technology
 - Yubin Tian of Beijing Institute of Technology
- Published in the Journal of Statistical Planning and Inference, 2013
 - <u>http://dx.doi.org/10.1016/j.jspi.2013.10.007</u>

The Three-Phase Optimal Design Test (3)

Phase I: Find the mean

- Step I1: Obtain success and failure results
- Step I2: Get an overlapping result
- Step I3: Enhance the overlapping result
- Phase II: Optimize the mean and standard deviation
- Phase III (optional): Test at desired probability level to reduce uncertainty

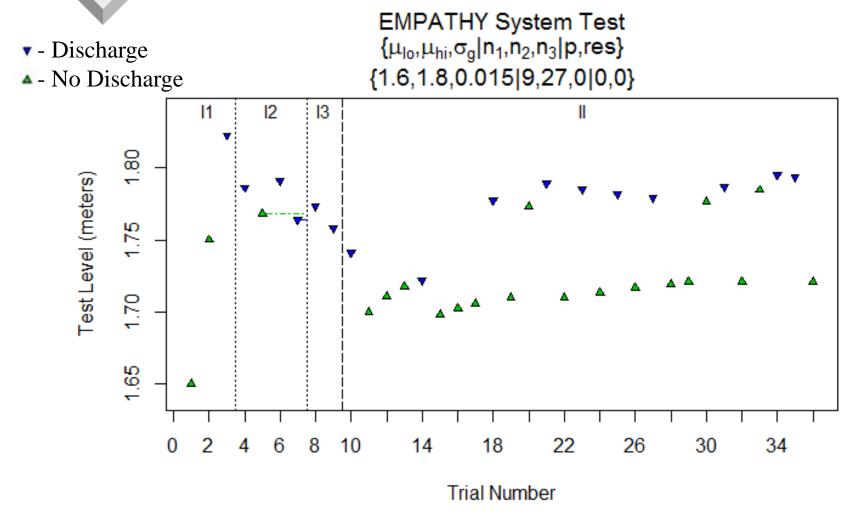
The Three-Phase Optimal Design Test (4)

- Assumes probability curve follows normal distribution
- Requires starting values:
 - Approximate lower and upper bounds of range
 - Approximate standard deviation of probability curve

Our Example Problem (3)

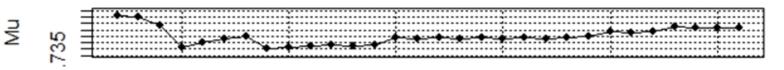
Simulations show:

• 1.6-meter stack of blankets is not enough insulation – no discharge

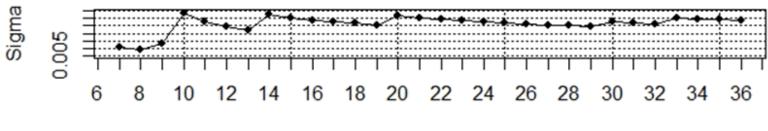

• Lower end of "initial guess" interval

• 1.8-meter stack of blankets is enough insulation – discharge

• Upper end of "initial guess" interval


- Estimated Standard Deviation
 - Should be less than one sixth of range
 - We use 0.015 meters

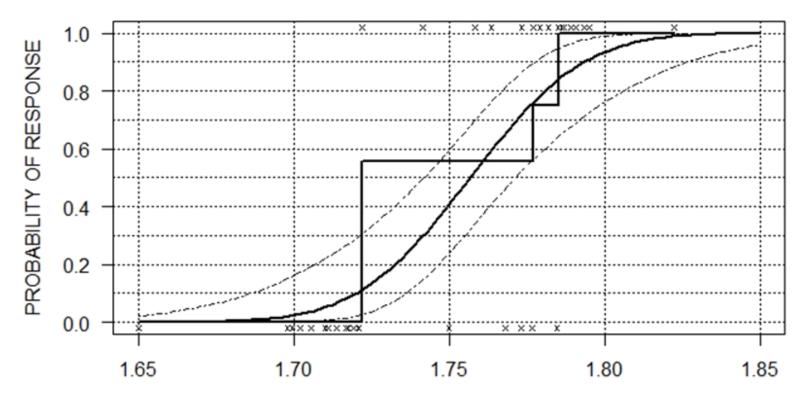
Our Example Problem (4)



Our Example Problem (5)

EMPATHY System Test - Sequence of MLE'e {1.6,1.8,0.015|9,27,0|0,0}

Nominal Values: Mu = 1.750Sigma = 0.050 Final Calculated Values: Mu = 1.757Sigma = 0.029



Cumulative Test Size

Our Example Problem (6)

EMPATHY System Test: (Mu, Sig, n) = (1.757, 0.029, 36)

 $\{1.6, 1.8, 0.015 | 9, 27, 0 | 0, 0\}$

meters

- Data Range
- Limited Precision
- Specified vs. Actual Test Point Values
- End of Test

Data Range

- Issue:
 - Method is mathematical
 - No knowledge of physical limitations on system
 - Can specify unreasonable test points
 - \circ Negative thickness of stack of blankets
 - Stack thickness beyond system capability
- Resolution:
 - Use common sense

Example (5)

EMPATHY system testing:

- If first several tests give "discharge" result:
 - Thickness of blanket stack decreases
 - Next test point requires negative thickness
 o Not physically real
- If first several tests give "no discharge" result:
 - Diameter of EMPATHY case is 2.14 meters
 - Hard upper limit on blanket stack thickness
 May result in system not meeting requirement

Limited Precision

Issue:

- 3POD method can specify test points to unlimited precision
- Test articles cannot be built to unlimited precision
- Resolution:
 - Points close to optimal point are still good
 - Do your best

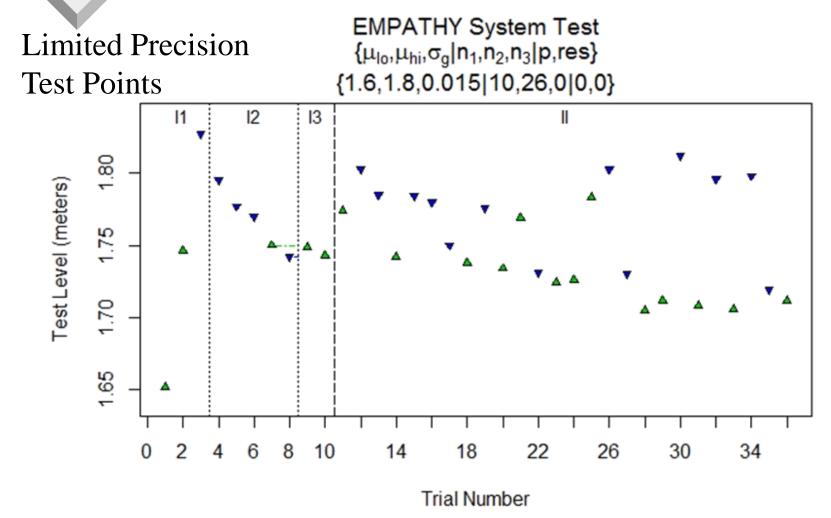
Limited Precision (2)

Three different things:

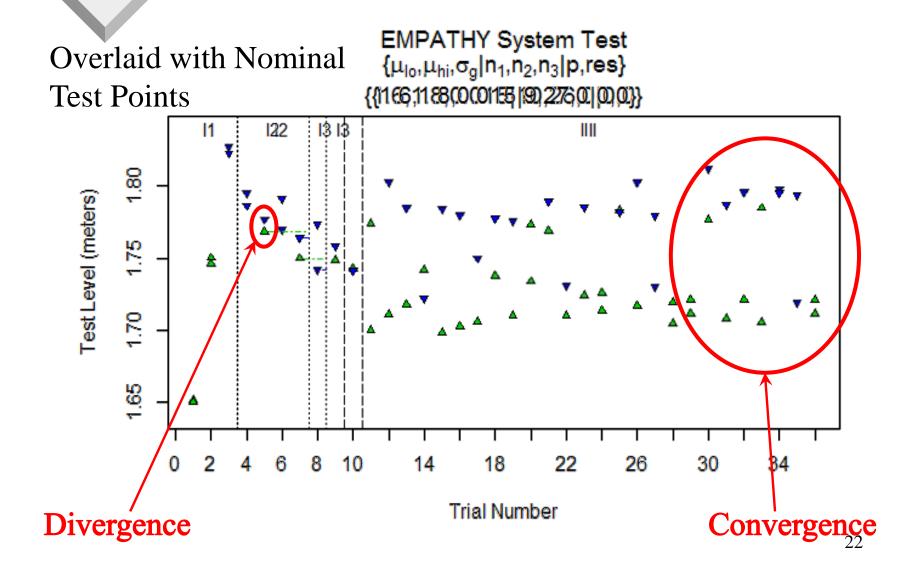
- Test point specification result of 3POD method
- Test item fabrication built to specified point at limited precision
- Test item measurement may be more precise than test item fabrication ability

Limited Precision (3)

Resolution (2)


- Specify test points to 3POD recommended precision do not round to specifiable precision
 - Scatter will center around recommended point
- Use measured values in 3POD method calculations
 - ♦ Not specified values
 - Not rounded measured values
 - ♦ Not 3POD method's recommended values ¹⁹

Example (6)


EMPATHY blankets settle irregularly

- Final thickness controlled only to <u>+0.01</u> m
 One centimeter scatter on either side
- Can be measured to ± 0.0005 m
 - ♦ One-millimeter uncertainty overall

Example with Limited Precision

Example with Limited Precision

Effect of Limited Precision

	Test	Nominal		Limited Precision		
		Test Value	Outcome	Spec Value	Actual Value	Outcome
	1	1.65	No Discharge	1.65	1.652	No Discharge
	2	1.75	No Discharge	1.75	1.746	No Discharge
	3	1.8225	Discharge	1.82250	1.827	Discharge
Diver	gence 4	1.78625	Discharge	1.78650	1.795	Discharge
	5	1.76812	No Discharge	1.77050	1.777	Discharge
	6	1.79075	Discharge	1.76150	1.770	Discharge
	7	1.76362	Discharge	1.75800	1.750	No Discharge
	Final	Mu	Sigma		Mu	Sigma
	Values	1.757	0.029		1.754	0.034

Final values still pretty close

Limited Precision (4)

- Issue:
 - Standard deviation of distribution may be near limit of precision of creating test items
 - Specified test points in Phase I2 may all round to the same value, preventing overlap

Limited Precision (5)

Resolution:

- Alternative 1: Use "engineering judgment" to modify test points for Phase I2
 - ◆ If tests <u>never</u> achieve overlap, standard deviation is less than measurement precision
- Alternative 2: Add fictitious "test points" at changeover point to create artificial overlap

Example: Alternative 1

Can build, measure only to 0.01:

Test	Specified Test Point	Rounded Test Point	Actual Test Point	Test Result
1	1.65	1.65	1.65	No Discharge
2	1.75	1.75	1.75	Discharge
3	1.7	1.70	1.70	No Discharge
4	1.725	1.72	1.72	No Discharge
5	1.735	1.74	1.74	No Discharge
6	1.7545	1.75	1.75	Discharge
7	1.7355	1.74	1.74	No Discharge
8	1.753	1.75	→ 1.76	Discharge
9	1.737	1.74	→1.73	

Settling around two points

Example: Alternative 2

Can build, measure only to 0.01:

Test	Specified Test Point	Rounded Test Point	Test Result
1	1.65	1.65	No Discharge
2	1.75	1.75	Discharge
3	1.7	1.70	No Discharge
4	1.725	1.72	No Discharge
5	1.735	1.74	No Discharge
6	1.7545	1.75	Discharge
7	1.7355	1.74	No Discharge
8	1.753	1.75	No Discharge
9	1.737	1.74	Discharge

Fictitious test points and results 27

Specified vs. Actual Test Points

Issue:

- 3POD method
 - Assumes actual test points same as specified test points
 - Declares overlap based on test result without checking actual test point
- 3POD algorithm may specify leaving Phase I2 without achieving overlap
- Resolution: Use common sense

End of Test

Issue:

- 3POD method does not specify number of tests or ending criterion
- Number of tests often governed by economics and other factors
- "99.99% value" vs."acceptable 99.99% value"

End of Test (2)

Resolution

- Specify ending criterion in advance: "99.99 percent probability, with 95 percent confidence, that a thickness of 2.14 meters will not allow a spark between electrodes"
- Continue testing until
 - Criterion is met
 - Criterion will still be met if next three* tests give less probable result

*arbitrary number

End of Test (3)

- Issue:
 - Calculation of 99.99%-at-95% point
 - Issue: Different methods give different results

 Logit link vs. Probit link vs. other links
 (define exact shape of probability curve)
 Which do you believe?

End of Test (4)

If criterion is never met:

- More testing will* tighten 95% confidence bounds
- Possibility that criterion cannot be met
 - It may take 2.15 meters of blankets to prevent spark between the electrodes

End of Test (5)

"Point of No Return"

- Situation: Phase II
 - Predicted 99.99%-at-95% "threshold" point exceeds maximum value
 - \circ Hard limit on number of tests possible

• Suggestion: Predict test into the future

- Assume no further anomalies
- Determine whether remainder of test shots can bring threshold point down to an acceptable level
- If not, consider declaring failure early and saving test resources

SPOD method can be successfully applied to a "real-world" situation

- "Lessons Learned?"
 - Lessons are available
 - Learning them is everybody's job

