

U.S. Army Research, Development and Engineering Command

Introduction to Key Parameter Development and Management (KPD&M)

19th Annual NDIA Systems Engineering Conference

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Author: Shawn Dullen

Date: 27 October 2016

- Background
- What/Why/How
- Focus Area
- Process
- Example
- Questions

Background

Continued "fire-fighting" throughout production because the following are not understood:

 Design factors impacting desired performance

RDECOM

- System interactions impacting desired performance
- External, deteriorative and manufacturing variations impacting desired performance
- Which characteristics to focus resources on

This led to the development of Key Parameter Development and Management

Key Parameter Development and Management (KPD&M)

What is KPD&M

RDECOM

 Structured process that integrates Engineering best practices to guide product development and process control efforts to areas of greatest impact

Why KPD&M

- Focuses time and money on the important characteristics from design through ongoing production
- Develops and documents the technical information required to produce best value products
- Provides the essential data to justify tolerances

• How

- Focusing on Moderate to High Technical Risks
- Understanding of Functions and Parametric relationships
- Concentrating on Physics
- Emphasis on Robust Design

Puts Engineering back into Systems Engineering

What does the word "Key" mean?

Something that is...

RDECOM

• New

- Totally new to you, no one has fulfilled the requirement(s) or controlled the parameter(s) before – no experience!
- Unique
 - The requirement(s) or parameter(s) have been fulfilled or controlled by others but not by you!
- Difficult
 - The requirement(s) or parameter(s) are extreme & their fulfillment or control is very high in risk

Key Parameters are associated to NUD requirements

Things that are not "Key"...

ECO

Something that is...

- Easy
- Common

RDECOM

• Old

These are functions, part specifications and manufacturing parameters that we place under normal quality control metrics

- Little or no investment to monitor or maintain
- Capability is checked periodically
- Use Six Sigma to react to problems in this area

Just because it is ECO does not mean it is not important.

Why focus on NUD's

NUD's pose the greatest risk to the program

RDECOM

Distribution Statement A: Approved for Public Release; Distribution is unlimited

8 of 17

Distribution Statement A: Approved for Public Release; Distribution is unlimited

KPD&M Metrics

<u>Capability</u> is the metric that we use to make decisions related to requirements...

It links the Voice of the Customer (VOC) to the Voice of Physics (VOP)

<u>The KPD&M Metrics</u>

- 1. Measurability
- 2. Stability
- 3. Adjustability
- 4. Interactivity
- 5. Sensitivity
- 6. Robustness
- 7. Capability

Knowledge Developed from Sequential Design of Experiments

RDECOM)

Tolerance Design

• Tolerances are established starting at the system level

- Allocate tolerances to sub-system functions
- Follow the same process until design features tolerances are established

Robustness

>What is robustness

 A product or process is said to be robust when it is insensitive to the effects of sources of variability, even though the sources themselves have not been eliminated

>What opportunities are there for robustness

- ✓ Interaction between Design Parameters and Noise Parameters
- ✓ Higher Order behavior caused by a Design Parameter (undesired)

>Why is Robustness desirable

- $\circ~$ Desensitization of function to unwanted sources of variation
- Key driver to improving capability
- Significantly improves reliability and performance
- Improves the cost effectiveness of technology and products

Product Development is the only time the system has an opportunity to be robust to variation

Robustness to Manufacturing Variation

RDECOM)

Key Parameter Identification (cont.)

RDECOM

KPD&M Example

Description:

RDECOM

M31 Fin Assembly is used on the Mortar 120MM Family of Munitions to provide flight stability and transfer energy for propulsion

<u>Results</u>:

Identified previously undefined characteristic that impacted safety and performance

Increased the design tolerance for the angle between blades (doubled the tolerance)

Eliminated 7 characteristics

Reduced sampling rates for 39 characteristics

 Developed new acceptance methodology that will reduce the inspection of 68 characteristics to monitoring 16 characteristics and inspecting 4 characteristics (in process of being piloted)

 Historically, malfunction investigations have revealed the design has been built to the TDP and still does not meet the performance or safety requirements Historically, the angle between blade requirement has limited the amount of suppliers that are willing to extrude the fin blanks Roughly 75% of the design characteristics are currently being tosted/inspected Roughly 75% of the design characteristics Boughly 75% of the design characteristics Developed validated aeroballistics model that 	Background:	Benefits:
be used to evaluate future RFV's or malfunction	 Historically, malfunction investigations have revealed the design has been built to the TDP and still does not meet the performance or safety requirements Historically, the angle between blade requirement has limited the amount of suppliers that are willing to extrude the fin blanks Roughly 75% of the design characteristics are currently being tested/inspected 	 Reduced the risk of performance and safety issues Increased the potential supplier base Eliminated non-value inspections and reclassified more than 57% of the characteristics Will be reducing the amount of inspection by more than 70% Will be implementing process controls which is the DOD preferred method of acceptance Developed validated aeroballistics model that can be used to evaluate future RFV's or malfunctions

Significantly improved quality, reliability, producibility and cost effectiveness of item

RDECOM

Unclassified

Questions?

Shawn Dullen ARDEC KPD&M Lead 973-724-5176 shawn.m.dullen.civ@mail.mil

