
The Use of Systems Engineering and Open

Architectures to Reduce Development Cycle

Time in Complex Systems

Dr. Craig Arndt

Ann Wong

24 Oct 2016

POTUS and SECDEF: “DoD Will Be Agile”

“The United States is going to maintain our military

superiority with armed forces that are agile,
flexible and ready for the full range of

contingencies and threats.”

- President Obama

“The US joint force will be smaller and leaner. But

its great strength will be that it will be more agile,
more flexible, ready to deploy quickly, innovative,

and technologically advanced. That is the force for
the future.”

- Secretary Panetta

Defense Security Review, 5 Jan 12
 2

Objectives

• Constraints

• Modeling Systems Engineering as a Control System

• Feedforward Toolbox

• Putting the “A” into Systems Engineering

• Summary

3

Constraints – Between a Rock….

4

Defense Acquisition System

COTS

Increasing Software-

related Demands

Changing Requirements

Evolving Threats

Pace of Technology

Funding Restraints

Increasing Complexity

Accelerated Fielding

Interoperability

Risk

5 Aug 11

Systems Engineering

• DAG: Systems engineering (SE) is a methodical and

disciplined approach for the specification, design,

development, realization, technical management,

operations, and retirement of a system.

• Systems engineering is the “art and science” of developing

an operable system capable of meeting a holistic set of

often conflicting requirements.

• Systems Engineering is:

• Interdisciplinary

• Integrative

• Holistic

• Iterative and recursive

• Socio-technical (hardware, software, people, facilities, data,

documentation)

System Engineering as a Open
Loop Control System

• Wild, Wild, West

• Pros:
– Simple

– No need for any sensors

• Cons:
– Would work only for very stable development, where all variables are known

– Requires a near-perfect model of the system

– Deviations to final product quality is allowed

– Cannot compensate for unknown disturbances

– Would not work for complex systems

 6

Controller Process
Set
Point

Input

Disturbance

Output

System Engineering as a Closed
Loop Feedback Only System

• Evaluation and Feedback occurs at output after a process is complete

• Pros:

– Product under evaluation is more stable, complete to that point

– Expected to meet a certain set of known, set requirements

• Cons:

– Time delay incurred when reacting to corrective feedback

– More extensive rework

– Reactive Process

– Emphasizes “perfection” absolute delivery

• Represents Status Quo

7

Controller Process
Set
Point

Input

Disturbance

Output

DoD Systems Engineering
Process Model

ENG-301 Leadership in Engineering Defense Systems 8

SE in Lifecycle Framework
Technical Reviews & Decision Points

ASR SRR SFR PDR CDR

TRR

SVR/

FCA
PRR

OTRR

PCA ISR

AOTR Assessment of Operational Test Readiness IBR Integrated Baseline Review

ASR Alternative System Review ISR In Service Review

CDD Capability Development Document MDD Materiel Development Decision

CDD-V CDD Validation Point OTRR Operational Test Readiness Review

CDR Critical Design Review PCA Physical Configuration Audit

CPD Capabilities Production Document PMB Performance Measurement Baseline

DRFPRD Development RFP Release Decision PRR Production Readiness Review

EMD Engineering and Manufacturing Development S&T Science & Technology

FCA Functional Configuration Audit SRR System Requirements Review

FDD Full Deployment Decision SFR System Functional Review

FRPD Full Rate Production Decision SVR System Verification Review

ICD Initial Capabilities Document TRR Test Readiness Review

IOC Initial Operational Capability

Mandatory technical
Reviews

Best practice technical
reviews and audits

Test reviews (see DAG
chapter 9)

IBR is a PM review of KTR
PMB for a contract with
EVM. Has a major technical
component

AOTR

A C B

LRIP Technology
Maturation &

Risk Reduction.

Production &
Deployment

DRFPRD

Materiel
Solution
Analysis

CDD-V

CDD

ICD Draft
CDD

Operations &
Support Materiel

Development
Decision

IOC

FRPD/
FDD

Sustainment

Disposal FOC

Engineering &
Manufacturing
Development

CPD

IBR IBR IBR

En
ab

lin
g

S&
T

&
 C

ap
ab

ili
ty

System Engineering as an Open
Loop With Feedforward System

• Pros:

– Minimum reliance on set goals and satisfying specific requirements

– Allows change in outcomes

• Cons:

– Not necessarily a repeatable process

• Feedforward systems can seem out of control, that’s the idea. For truly
rapid, innovative systems development we need to maintain visibility not
control

10

Controller Process
Set
Point

Input

Non-Measurable
(or Unknown)
Disturbance

Output

Measurable
Disturbance

System Engineering as an Open
Loop With Feedforward System

• New systems designed to be a feedforward will exhibit significantly
different behavior. This means that decisions made at the lowest level will
amplify themselves creating the possibility for both rapid failure and rapid
development of high quality products

11

Controller Process
Set
Point

Input

Non-Measurable
(or Unknown)
Disturbance

Output

Measurable
Disturbance

System Engineering as a Closed
Loop With Feedforward System

• Best representative of the system engineering process as practiced

• Best of both worlds
– Reap the benefits of the Pros

– Mitigates the Cons

• What does DoD do well?

12

Controller Process
Set
Point

Input

Non-Measurable
(or Unknown)
Disturbance

Output

Measurable
Disturbance

System Engineering as a Closed
Loop With Feedforward System

• DoD generally executes the Feedback Loop well enough:
– Technical Reviews

– Milestone Decisions Points

– Stage Gate process

– Entry and Exit Criteria

13

Controller Process
Set
Point

Input

Non-Measurable
(or Unknown)
Disturbance

Output

Measurable
Disturbance

• But what can DoD leverage the goodness of Feedforward?

• How can DoD leverage Feedforward to accelerate our
programs and remain malleable to changing user needs?

• There is opportunities to shift towards reaping the benefits
of Feedforward!

System Engineering as a Closed
Loop With Feedforward System

14

Controller Process
Set
Point

Input

Non-Measurable
(or Unknown)
Disturbance

Output

Measurable
Disturbance

System Engineering as a Closed
Loop With Feedforward System

15

Decision SE Process User
Requirement

Input

• Unintended Consequences
• Surprise Threats to include

Cyber
• Political Input

Capability

• Known Funding Issues
• Technical Standards
• New Technologies

How Do We “Feedforward” the
Systems Engineering Model?

16

Management

Development

Technical
Planning

Ops &
Sustainment

Feedforward Toolbox

Agile Management Concepts

17

Open Systems Architecture JCIDS IT Box Concepts

Rapid Acquisition Practices Theory of Constraints Product Stack Concepts

Others

Feedforward Toolbox

18

ACES Framework

How Can We Put the “A” into
Systems Engineering?

• Agile in Development
• Identify and track value-based requirements in smaller backlogs
• Develop new capabilities only when they can be developed quickly and efficiently to

meet those backlogs
• More direct and persistent user involvement
• More direct and persistent S&T involvement

• Agile in Technical Planning
• Architectures that support future upgrades are more valuable than the performance of

any one part of the system
• Agile in Operations and Sustainment

• Systems are not expected to be delivered in “final” configuration -- open
• Products will be well engineered, well managed and sustainable
• Agile in Management

• Schedules are based on technology availability and the needs of the user, in that order
and nothing else

• Fail Forward and Fail Fast
• Allow Development Team (to include users) to make the final call on performance

decisions
 19

Summary

• Taking a different look at the Systems
Engineering Process Model

– Control Systems

– Focus on Feedforward vs Feedback

• Finding ways to insert Agile concepts

– With the Toolsbox we have now

20

It’s not

Rocket Science

It’s harder

Acquisition:

“Comment form acquisition class at NRO”

Back-ups

22

Problem / Issues

• The current Defense Acquisition systems are designed around

deliberate point solutions to specific user requirements (inputs).

• Issues in funding and requirements stability can extend the

length of programs

• Interoperability can limit both initial designs and technical

refresh

• The use of COTS has proven not to increase the passé of

development and delivery

• Our Acquisition processes were developed and design around

traditional large scale weapon systems development (Ships,

Fighters, Tanks, etc.)

• The current systems engineering processes were not based on

software systems.

23

Many inside and outside of the Acquisition community have

questioned the ability of the DoD to develop high tech systems in

a timely manner.

Requirements

• One of the largest issues that has been identified with the

failures of government acquisition is that requirements, are not

– Stable

– Complete

– Achievable

– Well matched with threats

• Changes in requirements over the course of programs have

been shown to dramatically affect program cost and schedule

• Traditional Acquisition programs attempt to have a complete and

detailed set of requirement before starting to develop.

24

Given the continuously changing nature of requirements for DoD

systems the traditional requirements process does not support

rapid or agile development

Constraints (schedule, cycle time)

• Funding restraints

• Pace of threat changes in a complex

environment

• Pace of technological change

• Ability to field new capabilities

• Ability to adequately test new capabilities

before fielding to warfighters

25

The Key Constraint should be the time needed to train the

warfighters in new the new capabilities

Feedback vs. Feedforward (in
control vs. out of control)

26

• The current system is very much a
feedback control system. This means that
system uses significant levels of oversight
and review to control the process and is
managed from above.

• New systems designed to be a
feedforward will exhibit significantly
different behavior. This means that
decisions made at the lowest level will
amplify themselves creating the
possibility for both rapid failure and rapid
development of high quality products

• Feedforward systems can seem out of
control, that’s the idea. For truly rapid,
innovative systems development we need
to maintain visibility not control.

Open Systems Architecture

27

Key Interface

Interface

Key Interface using

Open Standard

Limited use of
proprietary
interfaces

System
External Systems •Employ modular design

•low coupling, high cohesion

•Designate key interfaces

•Which interfaces will frequently
need to change?

•Which interfaces impact future re-
procurement/ competition?

•Develop Business Case for use of
open interfaces and acquisition of
technical data.

•Use Open Standards

•Published, widely supported,
consensus based standards

•Certify Conformance

•Develop verification & validation
plans to confirm “openness”

Open Systems Architecture (OSA) uses
modularity and defined/ published boundaries
to support a business model that facilitates
competition and prevents vendor lock.

Stakeholder

Requirements

Definition

Architecture and the SE Design Process

28

Architecture

Design

System

Components,

Interface

Descriptions &

Standards

Architecture

Products

Describe:

Requirements

Analysis

Capability/Mission

Analysis

(JCIDS Process)

System

Functions,

Performance

and Interface

Requirements

Mission Goals,

Capability Requirements

Operational Concepts,

Operational Tasks,

Resource Flows

Tools of Systems Architecting
• Decomposition
• Trade-off Analysis
• Integrated, Multi-view

Modeling
• Simulation
• Performance & Risk

Assessment
• Heuristics
• Communication with

Stakeholders
• Critical thinking/inquiry
• Systems thinking

• The foundational document for
Agile software development

• Signed by 17 software
developers in Feb 2001

• Core Values
– Individuals and interactions over processes and tools

– Working software over comprehensive documentation

– Customer collaboration over contract negotiation

– Responding to change over following a plan

Agile Manifesto

http://agilemanifesto.org/

http://agilemanifesto.org/

1. Continuous delivery of valuable software

2. Welcome changing requirements

3. Deliver working software in weeks/months

4. Work together daily

5. Build projects around motivated individuals

6. Face-to-face conversation

7. Working software is the measure of progress

8. Promote sustainable development

9. Good design enhances agility

10. Simplicity is essential

11. Self-organizing teams

12. Reflect on how to become more effective

12 Principles of the Agile Manifesto

http://agilemanifesto.org/

http://agilemanifesto.org/

Agile Software Development
Methodologies

• Scrum

• eXtreme Programming (XP)

• Dynamic Systems Development Method

• Rapid Application Development

• Crystal

• Kanban

• …

Rapid Acquisition

• Rapid acquisition:
– Now focused (meet immediate warfighter

needs)

– More ad hoc process

– Broad requirement

– Quick assessment of alternatives

– Limited development

– High visibility on results

– Limited investment

• Traditional acquisition:
– Future focused

– Very structured process

– Evolved requirements

– Analysis of alternatives

– Lengthy development

– High visibility on program

– Large investment

32

Product Stack concept

33
calypsotesters.com

• Agile development can draw many
things from commensal systems
development approaches

• Architectures need to be structured to
change out different elements on differ
schedules based on the availability of
new technology.

• Cloud and SaaS can be used in the DoD
to provide flexibility in solutions
architectures.

• A flexible upgradable architecture can
be used to solve a wide range of
application problems in a cost and
schedule efficient manner.

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwits9L44f_OAhUBRSYKHceyBD4QjRwIBw&url=https://calypsotesters.com/testsoftware/hwswiostack/&bvm=bv.131783435,d.eWE&psig=AFQjCNGi4kkQRqG_9Hur2fPNwAT5fGY7gQ&ust=1473423886174675
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwits9L44f_OAhUBRSYKHceyBD4QjB0IBg&url=https://calypsotesters.com/testsoftware/hwswiostack/&bvm=bv.131783435,d.eWE&psig=AFQjCNGi4kkQRqG_9Hur2fPNwAT5fGY7gQ&ust=1473423886174675

Understanding Value (Theory of
Constraints)

• The only Value in the system is the value to the customer
• Bottlenecks govern both throughput and inventories
• An hour lost at a bottleneck is an hour lost for the entire

system
• An hour saved at a non-bottleneck is a mirage
• Waste in the system drives the cost
• From the customers (DoD / Warfighter) stand point the only

cost is opportunity cost (how often am I going to get a
system upgrade and how good will it be)

Key implications

35

• The current system is very much a feedback
control system. This means that system
uses significant levels of oversight and
review to control the process and is
managed from above.

• ACE’S is designed to be a feedforward
system. This means that decisions made at
the lowest level will amplify themselves
creating the possibility for both Rapid failed
program and

Lessons Learned from Agile

36

Lesson How to Apply

1. Welcome new requirements

If requirements are defined correctly in
classes and categories, new requirements
are really clarifications.

2. Close and continues relationship with
users

Developers (including the government
team) need to understand product, task and
environment (embed with users)

3. Only some architectures support Agile in
development and sustainment

Successful architectures need to be defined
by the product and the lifecycle, not the
vender development approach.

4. Prioritization is a must Traditional Specifications tend to end up as a
long list of must dos. Prioritization allows
for good design.

5. Communication must happen and often
between the wright players

The users and developers must
communicate and prototype products.

6. Team and Product before Organization
and Process

Process and leadership must not be allowed
slow down good design and good decision
making.

Lessons Learned from Rapid
Acquisition

37

Lesson How to apply

1. Requirements directly from users, and
users needs

Developers need to be in the field
collecting threat data in real time as
development is going on.

2. Early, continues, and innovative testing Testing continues to be critical, to
producing good products, but can be
conducted at different times.

3. Small, highly skilled teams providing
visibility to leadership, but not being
managed from above

Small high capability teams can make
critical decisions quickly and move to the
next task

4. Collaboration between users, venders,
and government

The government engineers need to doing
design and development along side of the
venders and users

5. High risk development, mitigated by mix
of mature products and highly resourced
new development supervised by top
technical experts

By knowing the details of the underlying
technology and building the right
architecture development and integration
risks can me actively managed.

New Acquisition principles

• It is about creating value for the customer by investing
resources (house flopping model). Return on investment.
– In and out fast

– Add maximum value given available resources

– Value is assessed based on capabilities that the customer can use

– Product and Schedule is based on prioritized set of capability
blocks not requirements

• Only develop new products or systems when they can be
developed and delivered quickly, efficiently and provide
value to the end customer in teams of capability

38

Functional Requirements for Agile
DoD Acquisition

39

• New Systems and new capabilities be made
available to the warfighter based on their ability to
effectively use them.

• Government contracting will not inhibited the
rapid development.

• The DoD will buy value blocks of capabilities in
specific areas defined over the course of the
development by integrated teams of government
and contractor developers.

• The architectures of new systems will be evaluated
first for enhancement to future upgrade and
maintained.

Change in Mindset

40

• Success is measured by the core team, (users and developers
only)

• Failure is expected and not-attributed
• Systems are not expected to be delivered in final configuration
• An architecture that supports future upgrade is more

important than the performance of any one part of the system
• Schedules are set based on technology availability and the

needs of the user, in that order and based on nothing else.
• The decision about the maturity of the technology belong to

the engineer.
• Managing technical development requires direct involvement

in all aspects of the

New Manifesto

41

1. There are no pure managers, if you do not have a technical
role in the project you are not part of the team, just support
staff.

2. Parallel all activities that can be parallel (if it requires
iteration, review, or update it can be done in parallel).

3. Requirements are developed as needed to characterize
capabilities needed by and delivered to users.

4. Its alright to fail, and it alright to decide that the program
should be shut down.

5. New systems can be delivered fast and effectively only when
the technology and the users are ready

6. The first solution will not complete and will need to be
updated, therefore the upgrade and modification
architecture is more important that the first solution

ACES Key Systems Engineering
principles

42

1. Use of state of the art tools
• Automated real time requirements definition
• Deploy and update prototypes in the field
• Development teams deploying sensors and other data collection

tools to field to test and gather new requirements
2. Agile principles
3. Open systems principles
4. Just in time requirements

• Requirements will be defined as they are needed
• Interfaces first
• Performance, iteratively as capabilities are available

5. Continues testing
6. Technical management best practices

• Teams lead by technical experts also doing development
7. Lean development principals

• Value is defined by the operator
• Remove non-value added processes

Architectural Concepts

43

1. Architectures will assume that the first solution
will not be final and will not be the best solution.

2. Architectures will support operations while
development is ongoing.

3. Architectures will support continues operations
while different parts of the systems is being
tested.

4. Architectures will support remote operations of
parts of the system.

5. Architectures will support parallel development
of different parts of the system.

ACES Key Contracting principles

44

• We will contract for numbers of capability Value
blocks, not deliveries of specific systems with
specific per-determined requirements.

• New elements of “value”
 Each element of requirement and delivery will

be valued in units
 A particular delivery might be 3.2 units of value,

and be contracted and payed based on the
value

• Commodity based developmental contracting.
Scope controlled by the development team and end
users

ACES Key Program Management
principles

45

• Schedules will be based on availability
of capability and the ability of the
customer to accept delivery of new
systems

• Program management existed to
coordinate efforts of the technical
teams and provide resources

What has to change
to make this work

46

If we want to agile systems that follow the ACES
processes then we need to change some basic concepts:

1. The users and the developers need to be directly
connected

2. Get managers out of the decision making process
3. Government decision makers need to part of the

development team
4. Smaller high capability teams of users, and

government and contractor developers
5.

