What is Composition?
Why is it Hard?

Mike Whalen!2, Dan Bliek?, Karl Hoech?

1 UMSEC, University of Minnesota
2 Rockwell Collins

Material includes insights gained from Gerrit Muller,
John Shaw, Lee Pike, David Hardin, Bashar Nuseibeh,
and others.

Abstract # 18869

s developed with funding from the Defense Advanced
cts Agency (DARPA).

inions and/or findings expressed are those of the author and
interpreted as representing the official views or policies of the R oc kw e -
of Defense or the U.S. Government. c'o I”S

DISTRIBUTION A. Approved for Public Release. Distribution unlimited. Building trust every day

Rockwel//
Collins

State of the Practice

e Systems (esp. those with significant software) do not to
integrate easily or reliably.

HealthCare.gov Learn Get Insurance Login Espafiol
] Th I s WI | I Individuals & Families Small Businesses All Topics v~ SEARCH

continue with The System is down at the moment.
SySte m S Of SySte m S We're working to resolve the issue as soon as possible. Please try again later.

Che Washington Times HOME NEWS- OPINION - SPO

clude the reference ID belo

ps%3A//www.healthcare.g F_35 software problems

Reference ID

Software glitches leave Navy Smart Ship
dead in the water

DISTRIBUTION A. Approved for Public Release. Distribution unlimited. 2

Rockwe

.y

Integration and Composition

e Organizations tend to have a “Parts” focus.

- For “parts”, well-established:
e Certification procedures
Engineering workflow
Documentation procedures
Artifact management (SCM, CAD, ERP, Docs)

e Integration is approached as static activity “wiring together”
different subsystems

— Focus is on composability of simple interface types
— Behavior of the composed system is secondary, if considered at all

— Non-functional attributes (especially performance) may be
considered, but not from a reasonable basis

e Little understanding or focus on key performance
parameters

DISTRIBUTION A. Approved for Public Release. Distribution unlimited. 3

Collins

Typical Order of Integration Problems

1. The (sub)system does not build.

2. The (sub)system does not function.

3. Interface errors.

4. The (sub)system is too slow.

5. Problems with the main performance parameter, such as image quality.
6. The (sub)system is not reliable.

List from: Gerrit Muller: Why is System Integration Understood So Poorly?
2016 Kongsberg System Engineering Event

DISTRIBUTION A. Approved for Public Release. Distribution unlimited. 4

Rockwe

.y

A Change in Focus

e Composition is creating new or improved capability from a set of parts
- Not “wiring”, but behavior
- Dynamic view of the system
- Must require less effort and time than constructing from scratch

e Integration is a continuous, repeatable process not an event
- It occurs before systems are built
- Models are continuously updated with data
— Fail Early rather than Fail Late

e Analysis of composition should have analytic rigor
— Simulations are expensive and incomplete
- Often simulations require “nearly complete” software
- If possible, we would like proof or optimal result

e "“Parts” should be easily reconfigurable to meet new nonfunctional goals

“Integration Architectures” vs. “Functional Architectures” (c.f. Evan’s talk)
¢ Functional Architecture: What we want the system to do
e Deployment Architecture: How the pieces are assembled

DISTRIBUTION A. Approved for Public Release. Distribution unlimited. 5

Aozt A

This is not entirely new

e Web services illustrate many of these properties
- Excellent separation of mechanism from function
- For well-architected systems, excellent horizontal scalability
- Straightforward interoperability through shared protocols

- Strong CI practices in industry

Origin Servers

(¢

User Agents

Proxies

Gateways

%

e Substantial improvement on the deployment architecture of previous
systems

e However: few constraints on Size, Weight, and Power; Latency is
unpredictable; security is uncertain, etc.

DISTRIBUTION A. Approved for Public Release. Distribution unlimited. 6

Aozt A

Towards Integration Supported By Proof

DoDAF UPDM SysML o Compositional

SoS Models Verification Tools

o Automated import of DoDAF
compliant models

Assumptions
@ e i i Slaraniees Counterexa mples

Dlatfarrm Madelc
Rules of [
Engagement i i 4 \¢
. ¢ Qb pa F &l Y Test Case
Com3uter g 7 o s e— | . Generatmﬁ

e Architecture driven approach
scales formal verification to SoS

Assume/guarantee contracts
e enable analysis of heterogeneous
and legacy components

Single formal model used for
verification, test generation,
and simulation

Formal verification finds
errors before deployment

Metric-based test generation
@ provides known coverage of the
SoS and legacy components

>
o)
9
0
=
0
E
0
=
0
io
o
T
=
©
%]
o=
nv
>
e
o

‘ Simulation enables debugging
e of counterexamples and early
Component Models validation of contracts
e Support for analysis of SoS
physics and phenomenology

DISTRIBUTION A. Approved for Public Release. Distribution unlimited. 7

Aozt A

Architectural Modeling Using AADL

« Architecture Analysis & Description Language (AADL)
— SAE Standard for Modeling System Architectures

 Developed under DARPA DSSA Program for U.S. Army Applications
« Textual and Graphical Modeling Notation

Project Analyses OSATE Run SysML AGREE Window He\p
Ainuuu?ﬂl - COEEE e BB A I BIEE®
del GR 5 - Quick Access @\m

B>
05 _publ

 Open Source Tools (OSATE) Provided by Software Engineering Institute (SEI)
« Semantics More Completely Defined than SysML

« Contains Embedded System Constructs that SysML Lacks
— Supports non-functional analyses of architectures (performance, fault propagation)

« Extensible Through Annexes: our contract language is called AGREE

DISTRIBUTION A. Approved for Public Release. Distribution unlimited. 8

Aozt A

Towards a “"Capability IDE” and System Engineering Process

e You are not done when you get a proof

e A good specification environment IDE
needs:
- Symbolic Simulator (exploration)
- Compositional proof
- Contract checker (realizability)

Tradeoff Analysis
+ Effect of small deviations
+ “Stability” to small changes

Reuse &
Refinement Requirements

»&),Ellmtatlon
K

Modeling
+ Clear Specifications
* Improves Communication

Traceability & r
Completeness

* Provides Documentation

» Checks proof coverage

Proof Checking &

« Ensures Model “Makes Sense”
» Ensures Property “Makes Sense”

- Specification checker (vacuity)

Simulation
- Easy Validation
» Finds Errors Early

e Analogous to a good programming IDE
- Editor, Debugger, Profiler, etc.

D

Model Checking

+ Cheaper Than Manual Analysis
» Finds the Really Hard Errors

e SOSITE progress: Specifier’'s Workbench
- Symbolic simulator
- Automated traceability support
- Completeness analysis
- In progress: System optimization (using Pete
Manolios’ Inez tool)

= e
Be G Ve 7D ugam Hosgue Segch Popa Prjes OSATE Bam i
e TR rhe A AR B

e Improvements driven by feedback from several projects
- SOSITE: Systems-of-systems verification, parametric proof
- HACMS, CVFCS, SwPI, CRP: System verification
- MFD: subsystem testing and verification

DISTRIBUTION A. Approved for Public Release. Distribution unlimited. 9

Rockwe

.y

Composability and Complexity

e Current architecture description languages (SysML, AADL) and tools
intermix functional and deployment architecture
- Explicit “bindings” of functionality to threads, processes, physical resources
- Makes architectures rigid, makes proofs complex
- [Fred Brooks] separating essential complexity from accidental complexity

e Deployment should be automated

- Non-functional performance parameters drive deployment binding process
e Iterative binding generation throughout development cycle
e No surprises

- ADL support for synthesis and pre-verified architectural patterns
— Richer ADLs look more like programming languages

e Multiple, independent analyses for functional and non-functional
aspects
— Capability proofs depend on schedulability, isolation, etc.
- Principled mechanism for “passing the buck”

DISTRIBUTION A. Approved for Public Release. Distribution unlimited. 10

Rockwe

.y

Challenges

Composition requires isolation
- Interactions must be specified in terms of interfaces
— Software can be rife with hidden interactions:
e Memory boundary violations
e Starvation/misuse of resources
Composition requires trust boundaries
— Which components can I trust and how much?
— Encryption, Authentication and non-repudiation of communications
— C.f.: Charlie Miller Jeep car hack (Chrysler: 1.4M vehicle recall)
— Middleware can become “switchboard” exposing all data
Analysis requires model fidelity
- HACMS: “fly what you analyze”
Promising new technology
— sel4 (Data61) microkernel with proofs of memory non-interference
— Ivory / Rust programming languages ensure memory safety

— Recent work in homomorphic encryption allows data translation
without breaking encryption!

DISTRIBUTION A. Approved for Public Release. Distribution unlimited. 11

Rockwe

.y

Recap

e Current organizational focus is on parts (components)
e Integration focus is on wiring and static architectures

e Focus should shift to capabilities and behavior
— Fail Early
— Determine KPPs and model them into architecture

— Analytic rigor should be used
e proofs when possible

— Testing is too late, too expensive, and too incomplete

e Deployment architecture should be iterative and semi-
automated
— Increasing use of synthesis
— Deploy throughout design cycle
e Systemic approaches should be used to ensure isolation
— Partitioning, microkernels, and memory-safe languages

DISTRIBUTION A. Approved for Public Release. Distribution unlimited. 12

