
DISTRIBUTION A. Approved for Public Release. Distribution unlimited. DISTRIBUTION A. Approved for Public Release. Distribution unlimited.

What is Composition?
Why is it Hard?

Mike Whalen1,2, Dan Bliek2, Karl Hoech2

1 UMSEC, University of Minnesota
2 Rockwell Collins

Material includes insights gained from Gerrit Muller,
John Shaw, Lee Pike, David Hardin, Bashar Nuseibeh,
and others.

1

This research was developed with funding from the Defense Advanced

Research Projects Agency (DARPA).

The views, opinions and/or findings expressed are those of the author and

should not be interpreted as representing the official views or policies of the

Department of Defense or the U.S. Government.

Abstract # 18869

DISTRIBUTION A. Approved for Public Release. Distribution unlimited.

State of the Practice

• Systems (esp. those with significant software) do not to
integrate easily or reliably.

• This will
continue with
systems of systems

2

DISTRIBUTION A. Approved for Public Release. Distribution unlimited.

Integration and Composition

• Organizations tend to have a “Parts” focus.
– For “parts”, well-established:

• Certification procedures

• Engineering workflow

• Documentation procedures

• Artifact management (SCM, CAD, ERP, Docs)

• …

• Integration is approached as static activity “wiring together”
different subsystems
– Focus is on composability of simple interface types

– Behavior of the composed system is secondary, if considered at all

– Non-functional attributes (especially performance) may be
considered, but not from a reasonable basis

• Little understanding or focus on key performance
parameters

3

DISTRIBUTION A. Approved for Public Release. Distribution unlimited.

Typical Order of Integration Problems

4

List from: Gerrit Muller: Why is System Integration Understood So Poorly?

2016 Kongsberg System Engineering Event

DISTRIBUTION A. Approved for Public Release. Distribution unlimited.

A Change in Focus

• Composition is creating new or improved capability from a set of parts

– Not “wiring”, but behavior

– Dynamic view of the system

– Must require less effort and time than constructing from scratch

• Integration is a continuous, repeatable process not an event

– It occurs before systems are built

– Models are continuously updated with data

– Fail Early rather than Fail Late

• Analysis of composition should have analytic rigor

– Simulations are expensive and incomplete

– Often simulations require “nearly complete” software

– If possible, we would like proof or optimal result

• “Parts” should be easily reconfigurable to meet new nonfunctional goals

– “Integration Architectures” vs. “Functional Architectures” (c.f. Evan’s talk)

• Functional Architecture: What we want the system to do

• Deployment Architecture: How the pieces are assembled

5

DISTRIBUTION A. Approved for Public Release. Distribution unlimited.

This is not entirely new

• Web services illustrate many of these properties

– Excellent separation of mechanism from function

– For well-architected systems, excellent horizontal scalability

– Straightforward interoperability through shared protocols

– Strong CI practices in industry

• Substantial improvement on the deployment architecture of previous
systems

• However: few constraints on Size, Weight, and Power; Latency is
unpredictable; security is uncertain, etc.

6

DISTRIBUTION A. Approved for Public Release. Distribution unlimited.

Towards Integration Supported By Proof

7

DISTRIBUTION A. Approved for Public Release. Distribution unlimited.

Architectural Modeling Using AADL

8

• Architecture Analysis & Description Language (AADL)

– SAE Standard for Modeling System Architectures

• Developed under DARPA DSSA Program for U.S. Army Applications

• Textual and Graphical Modeling Notation

• Open Source Tools (OSATE) Provided by Software Engineering Institute (SEI)

• Semantics More Completely Defined than SysML

• Contains Embedded System Constructs that SysML Lacks

– Supports non-functional analyses of architectures (performance, fault propagation)

• Extensible Through Annexes: our contract language is called AGREE

DISTRIBUTION A. Approved for Public Release. Distribution unlimited.

Towards a “Capability IDE” and System Engineering Process

• You are not done when you get a proof

• A good specification environment IDE
needs:

– Symbolic Simulator (exploration)

– Compositional proof

– Contract checker (realizability)

– Specification checker (vacuity)

• Analogous to a good programming IDE
– Editor, Debugger, Profiler, etc.

• SoSITE progress: Specifier’s Workbench

– Symbolic simulator

– Automated traceability support

– Completeness analysis

– In progress: System optimization (using Pete
Manolios’ Inez tool)

• Improvements driven by feedback from several projects

– SoSITE: Systems-of-systems verification, parametric proof

– HACMS, CVFCS, SwPI, CRP: System verification

– MFD: subsystem testing and verification

9

DISTRIBUTION A. Approved for Public Release. Distribution unlimited.

Composability and Complexity

• Current architecture description languages (SysML, AADL) and tools
intermix functional and deployment architecture

– Explicit “bindings” of functionality to threads, processes, physical resources

– Makes architectures rigid, makes proofs complex

– [Fred Brooks] separating essential complexity from accidental complexity

• Deployment should be automated

– Non-functional performance parameters drive deployment binding process

• Iterative binding generation throughout development cycle

• No surprises

– ADL support for synthesis and pre-verified architectural patterns

– Richer ADLs look more like programming languages

• Multiple, independent analyses for functional and non-functional
aspects

– Capability proofs depend on schedulability, isolation, etc.

– Principled mechanism for “passing the buck”

10

DISTRIBUTION A. Approved for Public Release. Distribution unlimited.

Challenges

• Composition requires isolation

– Interactions must be specified in terms of interfaces

– Software can be rife with hidden interactions:

• Memory boundary violations

• Starvation/misuse of resources

• Composition requires trust boundaries

– Which components can I trust and how much?

– Encryption, Authentication and non-repudiation of communications

– C.f.: Charlie Miller Jeep car hack (Chrysler: 1.4M vehicle recall)

– Middleware can become “switchboard” exposing all data

• Analysis requires model fidelity

– HACMS: “fly what you analyze”

• Promising new technology

– seL4 (Data61) microkernel with proofs of memory non-interference

– Ivory / Rust programming languages ensure memory safety

– Recent work in homomorphic encryption allows data translation
without breaking encryption!

11

DISTRIBUTION A. Approved for Public Release. Distribution unlimited.

Recap

• Current organizational focus is on parts (components)

• Integration focus is on wiring and static architectures

• Focus should shift to capabilities and behavior

– Fail Early

– Determine KPPs and model them into architecture

– Analytic rigor should be used

• proofs when possible

– Testing is too late, too expensive, and too incomplete

• Deployment architecture should be iterative and semi-
automated

– Increasing use of synthesis

– Deploy throughout design cycle

• Systemic approaches should be used to ensure isolation

– Partitioning, microkernels, and memory-safe languages

12

