Developing Logistics Strategy using Optimization with Uncertain Data: The Marine Corps Assault Amphibious Vehicle Return to Condition Code Alpha (RCCA)

Authors:

Dr. Edward DeVilliers, DeVilliers Technology Solutions LLC Mr. Douglas Smith, Naval Surface Warfare Center, Dahlgren

NDIA 19th Annual Systems Engineering Conference 27 October 2016

Purpose

Review the methodology and results from applying Multi-Criteria Decision Making (MCDM) and Optimization to the Marine Corps logistics strategy for the Assault Amphibious Vehicle (AAV) called RCCA – Return to Condition Code Alpha.

Outline

- Background of AAV and RCCA
- Initial RCCA Activities
- Multi-Criteria Decision Making
- Approach for RCCA Physical Programming
- Process
- Metrics
- LPP Calculation Examples
- Results

Background - AAV

- Assault Amphibious Vehicle is the Marines' combat vehicle providing a ship-to shore amphibious and expeditionary capability.
 - First fielded in 1970's
 - Planned to be replaced by the Amphibious Combat Vehicle (ACV)
 - Needs to be supported through ~2025

- Depot-level maintenance strategy is IROAN – Inspect, Repair Only As Necessary
- Plan Every AAV to go through IROAN ~6 years.

Logistics Issues and Solutions

- Current IROAN issues:
 - IROAN costs per vehicle are rising – optemp.
 - Years between IROANs per vehicle is increasing.
 - Parts lead-time and DMSMS impacting IROAN schedule.
 Vehicles taking more time to go through IROAN.
 - More parts replacements taking place.
- Question: How best to affordably maintain AAV until ACV is fielded.

- Answer Return to Condition Code Alpha (RCCA)
 - Replace key components with high maintenance history with new parts – increase reliability.
 - Goal is to have vehicles only go to depot once before ACV replacement.
 - Be able to methodically plan for parts ordering.
 - Keep within a certain budget per vehicle. Easy planning and funding.
- Problem: Limited logistics records.
 - Reliant on Field Service Representatives' (FSR) corporate knowledge.

Initial RCCA Planning

RCCA Team - Three main groups

- Marine Corps Systems Command AAV Program
- Marine Corp Logistics Command Weapon Systems Manager (WSM) and the two Marine Corps Depots – Albany and Barstow
- Operating Forces Field Service Representatives (FSRs)

BOM selection.

- Lack of per vehicle replacement data
- Overall Parts order history past 3 years
- Used Depot-level TMs to define -120 major subsystems and components

Option Determination with SMEs (FSRs, AAV, LOGCOM)

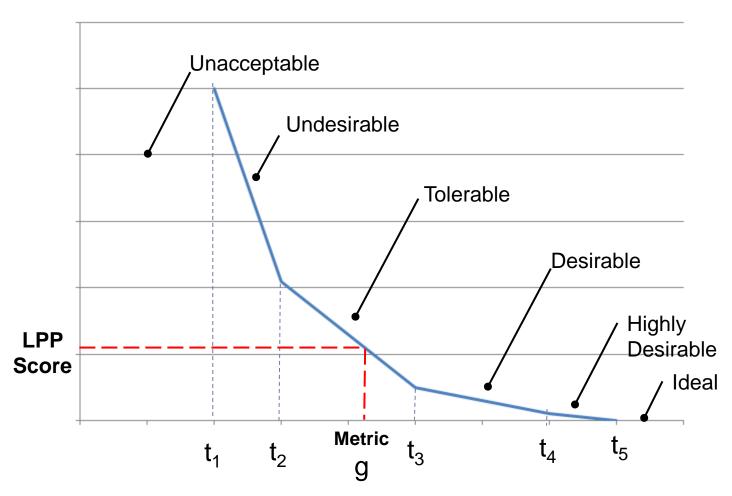
- Per table review (table = components of a subsystem/component from a TM figure)
- Used SME knowledge for initial recommendations

Issues with Initial RCCA Determination

- Cost May need to scale back the list of components to be replaced, due to cost.
- Need to decide on other options (e.g. remanufacture, repair, inspection) for some components, and prioritize the options selected for decision makers.
- Issue How do we assess objectively on what options to modify what RCCA does, as currently defined, within an uncertain data environment?
 - Answer Multi-criteria Decision Making (MCDM)

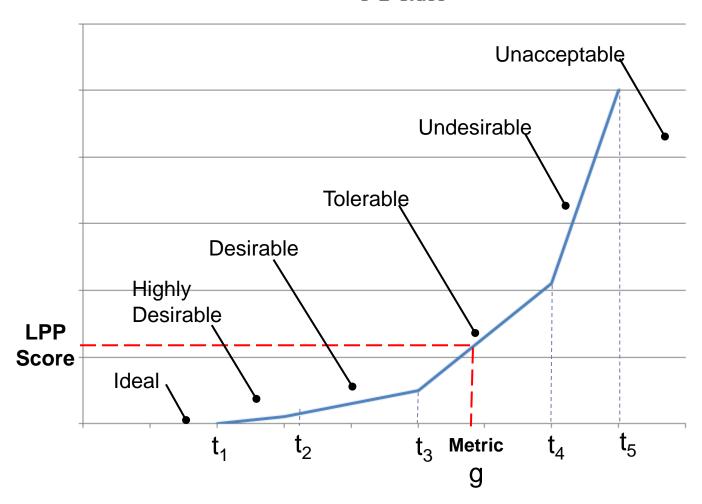
Mutli-Criteria Decision Making (MCDM)

- Most engineering problems and their COAs have many different and conflicting metrics.
- To assess different combinations of metric values, Multi-Objective Optimization (MOO) or Multi Criteria Decision Making (MCDM) are used.
 - Weighting methods are common, and the oldest:
 - Simple weighting
 - Analytical Hierarchal Process (AHP) weighting determined through pairwise comparisons of attributes or metrics
 - Quality Function Diagrams (QFD)
 - Get a single score per option, taking all metrics into account.
- Problem with weighting: Subjective, prone to getting the answer you wanted, and can be time consuming (e.g. pairwise comparison)



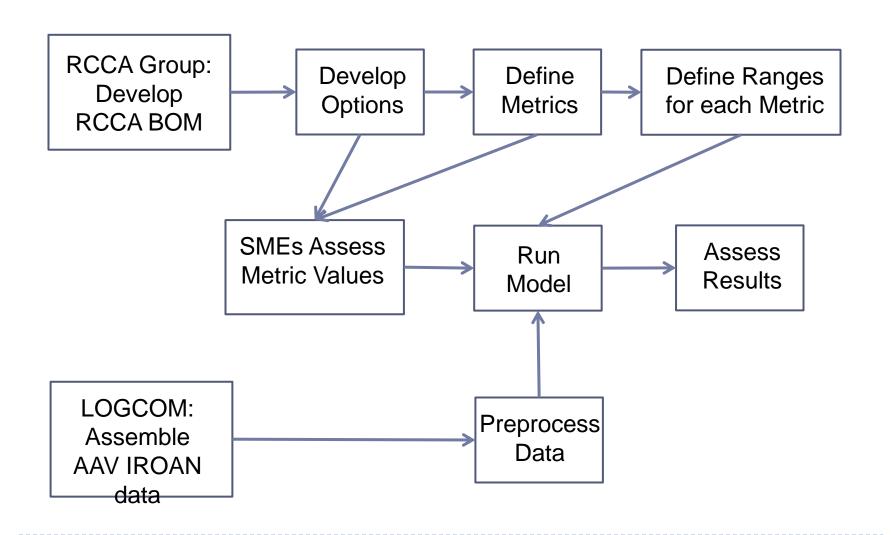
Linear Physical Programming

- Does not use the weighting of metrics
 - No discussions like cost more important than reliability
- Avoiding weighting subjectivity (e.g. Cost is weighted x3, reliability x2)
- Requires less stakeholder involvement. (e.g. pairwise comparison – 10 metrics would require 45 comparisons, 20 requires 180)
- Focuses on each individual metric, scoring how well a metric lands within various pre-defined ranges (ideal range down to unacceptable). Easier to be more objective.
 - ▶ E.g. CPD requires functionality provided to be between 85% (T) to 95% (O).
 - User preferences can be very granular.


LPP – "Bigger is Better" Metric

LPP – "Smaller is Better"

S-1 Class



LPP

- The LPP methods favors a COA that has acceptable metric values for all metrics, rather than a COA that has a few outstanding metric values but many other metrics that have undesirable metrics results.
 - Acquisition Friendly: Reinforces COAs that meet all requirements, and helps avoid "gold-plating" at the expense of poor performance in other areas.
 - Analogy: LPP favors the all-around good basketball team, rather a team with a couple of superstars but the rest of the team being bad.
- Can use metrics where "smaller is better" (e.g. cost) or "bigger is better" (e.g. reliability)
- No special tools implemented in MS Excel

Process

Metrics

- Seven metric types developed by the group:
 - Per subsystem/table
 - Procurement Cost (Smaller is Better)
 - New Parts Acquisition
 - Labor (Smaller is Better)
 - □ Relative scale (0-10: No labor to extreme labor required)
 - Longevity (Bigger is Better)
 - ¬ Measured in Years.
 - Risks (Smaller is Better)
 - □ 0-3 low, 4-6 Medium, 7-10 High
 - ☐ Mission Performance Risk
 - □ Safety Risk
 - □ Supply Risk (Avg)
 - □ Supply Risk (Max)

All but the Procurement Cost metric was SME-

Proposed Metrics

- ▶ The seven metric types can be associated for specific subsystems or the overall vehicle.
 - (Radiator Cost) and (Transmission Cost) are two separate metrics
 - Ended with 532 metrics
- Can decide at any time what metrics you want to include or exclude in calculations to determine an overall score for each option.
- All options under consideration need to have the same metrics chosen for a consistent comparison.

Metric LPP Scales

	t1	t2	t3	t4	t5	Comment		
Parts Cost	-2σ	-σ	μ	σ	2σ	The mean and stddev are calculated from the costs for components in that table for the various options (e.g. RCCA, IROAN, and "Do Nothing")		
Labor	2	4	5	7	8	Across all tables, 2 is the best (Objective) value and 8 is the worst (threshold)		
Longevity	1	2	3	4.5	6	Across most tables, 6 is the best (Objective) value and 1 is the worst (threshold) value. In some instances (e.g. engine), the objective can go up to 10.		
Mission Risk	2	4	5	6	8	Across all tables, 2 is the best (Objective) value and 8 is the worst (threshold)		
Safety	2	4	5	6	8	Across all tables, 2 is the best (Objective) value and 8 is the worst (threshold)		

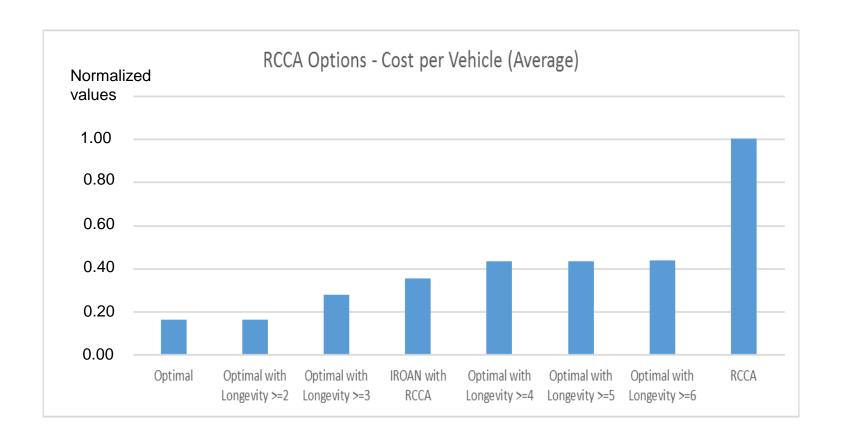
Ranges for the metrics was done by SME consensus. The ranges do not limit what the actual metric values may be. For instance, a component may have a longevity of 10 years, but the max the group saw needing optimally was 6

Major Options

- The model has assessed the following RCCA COAs/Options, considering all 532 metrics:
 - RCCA used the RCCA BOM that replaced all components on the list
 - Min IROAN Conducted IROAN, using average parts costs mined from depot data. Sometime RCCA options are used on a table-by-table basis if metric values do not meet the predetermined threshold.
 - Optimal Per table, the optimal option is selected using the 5-7 metrics associated with a table.
 - Optimal with Longevity (2-6) Using the optimal COAA as a basis, the optimal per table option is selected that meets or exceeds the longevity target. This provides 5 different RCCA COAs/Options.

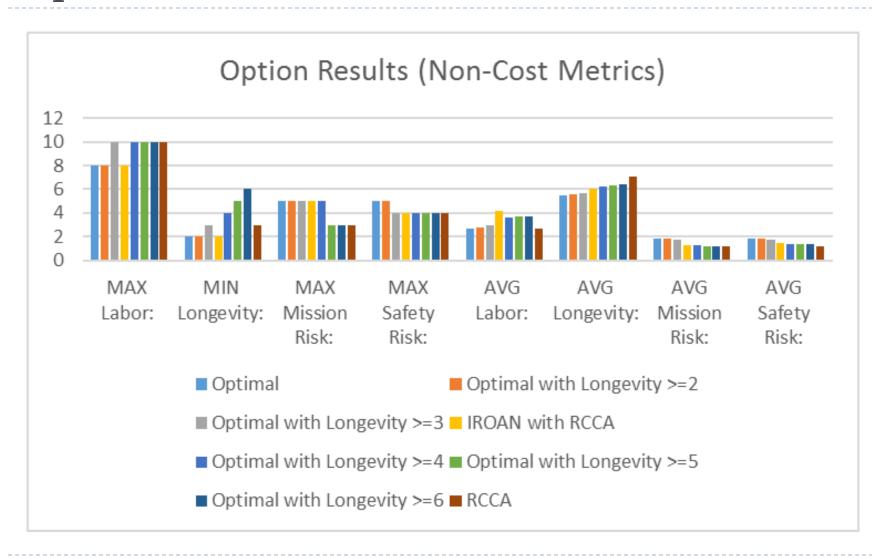
Internal Table Optimal Choice

				RCCA I	RCCA BOM		MIN IROAN		Do Nothing	
#	▼ Table	▼ Metric Name	Description	Metric Value 🔻	LPP Value	Metric Value	LPP Value	Metric Value	LPP Value	
1	Table 3-1	Cooling System Hoses, Tubes, and Fittings-Cost-Parts	Parts Cost	\$150.43	1.21	\$247.65	4.02	\$0.00	0.09	
2	Table 3-1	Cooling System Hoses, Tubes, and Fittings-labor	Labor	1.00	0.00	5.00	0.70	0.00	0.00	
3	Table 3-1	Cooling System Hoses, Tubes, and Fittings-Longevity	Longevity	6.00	0.00	6.00	0.00	2.00	4.30	
4	Table 3-1	Cooling System Hoses, Tubes, and Fittings-Mission-Risk	Mission Risk	1.00	0.00	1.00	0.00	7.00	15.10	
5	Table 3-2	Radiator-Cost-Parts	Parts Cost	\$5,755.33	7.23	\$1,101.66	0.47	\$0.00	0.25	
6	Table 3-2	Radiator-labor	Labor	1.00	0.00	8.00	25.90	0.00	0.00	
7	Table 3-2	Radiator-Longevity	Longevity	6.00	0.00	6.00	0.00	2.00	4.30	
8	Table 3-2	Radiator-Mission-Risk	Mission Risk	1.00	0.00	3.00	0.05	7.00	15.10	


			MIN	Do			
Table	Name	RCCA	IROAN	Nothing	1st	2nd	3rd
Table 3-1	Cooling System Hoses, Tubes, and	0.020848	0.168411	0.322473	RCCA	MIN	Do
	Fittings-Cost-Parts					IROAN	Nothing
Table 3-2	Radiator-Cost-Parts	0.214826	0.355473	0.323347	RCCA	Do	MIN
						Nothing	IROAN

Example: Optimal Option Results

Table	Metric Name	RCCA	IROAN with	Optimal	Optimal with Longevity >=2	Optimal with Longevity >=3	Optimal with Longevity >=4	Optimal with Longevity >=5	Optimal with Longevity >=6
Table 11-1	ELECTRICAL SYSTEM INSTALLATION	RCCA	RCCA	RCCA	RCCA	RCCA	RCCA	RCCA	RCCA
Table 11-3	INSTRUMENT DISTRIBUTION BOX	RCCA	MIN IROAN	MIN IROAN	MIN IROAN	MIN IROAN	MIN IROAN	MIN IROAN	MIN IROAN
Table 11-4	LIGHTS AND HORN	RCCA	MIN IROAN	MIN IROAN	MIN IROAN	MIN IROAN	MIN IROAN	MIN IROAN	MIN IROAN
Table 11-4a	VANEAXIAL FANS	RCCA	MIN IROAN	Do Nothing	Do Nothing	Do Nothing	MIN IROAN	MIN IROAN	MIN IROAN
Table 11-5	ELECTRIC BILGE PUMP	RCCA	MIN IROAN	MIN IROAN	MIN IROAN	MIN IROAN	MIN IROAN	MIN IROAN	MIN IROAN
Table 11-6	INDICATOR PANEL	RCCA	MIN IROAN	MIN IROAN	MIN IROAN	MIN IROAN	RCCA	RCCA	RCCA
Table 11-7	POWER TRAIN CONTROL ASSEMBLY	RCCA	MIN IROAN	OPT 2	OPT 2	OPT 2	OPT 2	OPT 2	RCCA
Table 12-1	FUEL SYSTEM INSTALLATION	RCCA	RCCA	Do Nothing	Do Nothing	Do Nothing	RCCA	RCCA	RCCA
Table 13-1	COMMUNICATION SYSTEM COMPONENTS	RCCA	RCCA	RCCA	RCCA	RCCA	RCCA	RCCA	RCCA
Table 13-2	EPLRS Components	RCCA	MIN IROAN	MIN IROAN	MIN IROAN	MIN IROAN	MIN IROAN	MIN IROAN	MIN IROAN
Table 13-3	TACTICAL NAVIGATION DIGITAL SYSTEM - LITE	RCCA	MIN IROAN	MIN IROAN	MIN IROAN	MIN IROAN	MIN IROAN	MIN IROAN	MIN IROAN
Table 13-4	DAGR	RCCA	MIN IROAN	MIN IROAN	MIN IROAN	MIN IROAN	MIN IROAN	MIN IROAN	MIN IROAN



Initial Option Results - Cost

Option Results – Non-Cost Metrics

Observations

- The key metric types that show the most variation in the results are cost and minimum longevity.
- Average IROAN costs, per NSN, are usually much lower than RCCA replacement costs.
- The group was able to provide metric values for items, like labor, for which current hard data has not been processed to use in a model that uses individual NSNs.
- There is a large mix of replacement, IROAN, and "Do nothing" selections when assessing actions at the table level.
- There is not much cost difference between COAs with
- a minimum longevity from 4-6 years.