

Integration of an In-Vehicle Network Utilizing VICTORY Standards on a USMC M-ATV MRAP Vehicle

Mr. Ernest Sanchez

Ernest.Sanchez1@usmc.mil

USMC – PEO Land Systems

What is VICTORY?

- SONAM MARKET
- Vehicular Integration of C4ISR/EW InTerOpeRabilitY (VICTORY)
- VICTORY is a set of open standards developed by a governmentindustry partnership.
- VICTORY defines interfaces and component types to enable interoperability among automotive, C4ISR/EW, and network components within the vehicle.
 - VICTORY STANDARD SPECIFICATIONS Version 1.6.2, March 31, 2015
 - www.victory-standards.org
- A VICTORY-compliant In-Vehicle Network (IVN) uses hardware and software component types which have been tested using the VICTORY Compliance Test Tool.
- IVN hardware typically includes:
 - A Shared Processing Unit (SPU) to host the shared services (Apps) and data, and enable adding future capabilities by adding software.
 - An Ethernet Switch, connected to the SPU and IVN hardware components (radios, jammer, sensors, etc.).
 - Interactive Multi-Function Display Unit(s), replacing one or more single-use displays.

Why Open Systems?

- ❖Commercial product lifetimes are much shorter and more volatile than the weapons systems they support (i.e. years vs. decades). Acquisition managers take a **risk** to rely on unique products provided by a single supplier at high noncompetitive prices and with little opportunity for technology insertion by other suppliers.
- Potential benefits of using open systems:
 - Reduced cycle time
 - Reduced life cycle costs
 - Enabling interoperability
 - Technology insertion
 - Increased competition
 - Better performance

(Defense Acquisition University: CLE013 – Modular Open Systems Architecture for DoD Acquisition)

USMC Policy and Requirements

- Systems Engineering, Interoperability, Architectures, and Technology (SIAT) Memo, 18 Jul 2014
- Standardizing System Integration On Marine Corps Vehicles Utilizing VICTORY Standards
 - "VICTORY is the recommended standard for C4ISR/EW vehicle integration within the Marine Corps and shall be considered for implementation by MCSC and PEO LS managed programs as part of system upgrades, modernization, and new development."
- ❖ PEO Land Systems (LS) Policy 2-14, 22 Dec 2014
- Implementation of VICTORY Standards
 - PMs within PEO LS will:
 - Develop an appropriate strategy for implementing VICTORY considering existing architecture, planned upgrades and available resources; anticipate incremental approach for legacy vehicles.
 - Incorporate appropriate VICTORY compliant language in the RFP for new start vehicle programs.
 - Provide update of their VICTORY implementation plan during PMRs.
 - Appoint a POC for VICTORY implementation in your PMO.

Demonstration IVN Schedule

❖ PM MRAP worked with the VICTORY Standards Support Office (VSSO), Southwest Research Institute (SwRI), Agile, and SPAWAR-Atlantic to develop software and integrate hardware onto a USMC M-ATV for a VICTORY demonstration IVN system, within 12 months.

Schedule:

USMC MRAP VICTORY Kick-off	17 Sep 2014
Systems Functional Review (SFR)	10 Dec 2014
Preliminary Design Review (PDR)	4 Feb 2015
Critical Design Review (CDR)	29 May 2015
Pilot Test	14 Aug 2015

Engineering Approach

❖System Functional Review (SFR):

- Engaged USMC operating forces to prioritize In-Vehicle-Network (IVN) functions and capabilities.
- Performed Functional Decomposition focused on operational and maintenance tasks.
- A Functional Baseline was constructed, including those functions which were High and Medium priority.
- Included IVN, C4ISR, EW, and automotive systems.

❖Physical Architecture (SV-1):

Developed physical architecture identifying necessary components, cabling and interfaces.

❖Preliminary Design Review (PDR):

- Drafted Performance Specification.
- Virtual Hardware Integration performed using CAD Solid models.
- Software design and development/reuse strategy created.
- Risks identified and assessed with mitigation plans implemented.
- Planned for incremental software testing of services and plug-ins.

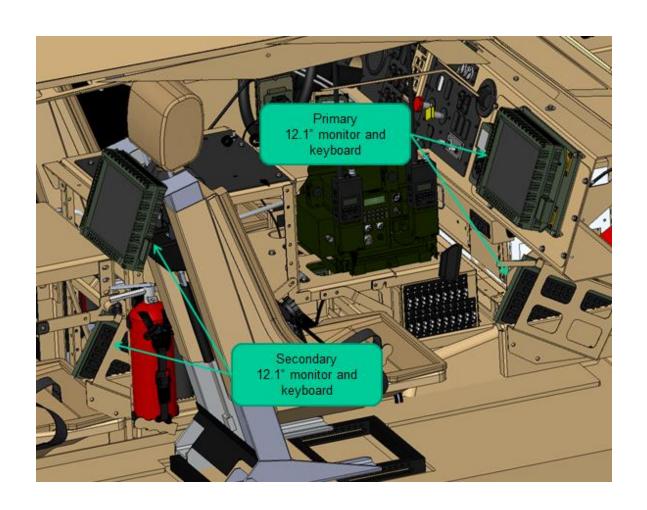
Critical Design Review (CDR):

- Performance Specification refined to draft version 3.0.
- Final hardware design in place.
- Initial operational software developed.
- Updated risk assessment with mitigation plans implemented.

❖Pilot Test

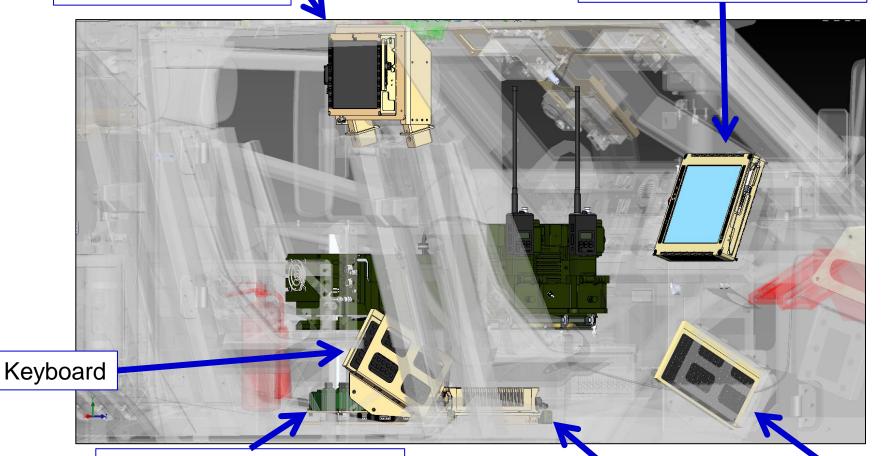
Operated the demonstration IVN system installed on a USMC M-ATV.

M-ATV Systems



- ❖ To support the currently fielded M-ATV configuration, existing C4ISR/EW and Automotive systems were demonstrated to be interoperable with the VICTORY IVN.
 - 1. Voice radio
 - 2. Voice radio
 - 3. Voice radios
 - 4. GPS Receiver
 - 5. Counter Radio-Controlled Improvised Explosive Device (RCIED) Electronic Warfare (CREW) system
 - 6. Blue Force Tracker (virtualized)
 - 7. SAE-J1939 vehicle CAN Bus

VICTORY Demo Implementation


M-ATV Demonstration System

- Replaced BFT processor by hosting software on the SPU
- Multiple components accessible via a multi-function display
- Enable centralized remote control of radios and CREW system

M-ATV VICTORY IVN Solid Models

Rear Multi-Function Display Screen

Co-Driver Multi-Function Display Screen

Digital Beachhead Shared Processing Unit (SPU) and Ethernet Switch

MFoCS Shared Processing Unit

Keyboard

Potential Benefits

Improve SWaP-C in the vehicle (clean up the cab)

Reduce the SWaP-C burden and improve ingress and egress

Enhance local situational awareness

Integrate video, diagnostics, warnings, & other data in vehicles and can enable sharing across units

Reduce users' operational burden

Automate manual and duplicative tasks

Realize cost conscious integration

- Integrate C4ISR, EW, and platform systems affordably with core IVN "Plug and Play" versus typical "Bolt-On" integration Provides an Open Architecture

- Reuse of software components across multiple platforms

Reduce the Logistics footprint

Significantly reduce costs of logistics operations by enabling condition-based maintenance (CBM), and automating configuration management and & health management tasks

Reduce test and training costs

- Improves the availability of information to support test and training operations
- Reduces costs and time necessary to integrate test and training systems with vehicles

Lessons Learned

System requirements:

- Start by clarifying requirements with user community.
- Scale IVN to reflect program priorities and requirements.
- Maintain room for growth.

❖Integration:

- Perform high fidelity bench integration before starting vehicle integration.
- Procure production grade equipment for development and testing.
- Install components with consideration given to ease of access and maintenance.

❖Network & software expertise is critical.

❖Information Assurance & Cybersecurity are required for fielding.

NIST Risk Management Framework

❖User Comments:

- Menu is easy to navigate.
- Do not introduce a single point of failure.

Conclusions

❖For programs pursuing a new VICTORY IVN acquisition:

- Focus on priorities of your program, and scale the system accordingly:
 - > Interoperability of systems.
 - Data logger for condition based maintenance (CBM).
 - Increased situational awareness.
- Information assurance and cybersecurity are necessary for production systems.
- Consider Human Systems Integration (HSI) when placing hardware components in the vehicle and when creating GUI menus.
- Plan and resource for User Interface and Adapter development.
- Engage the OEMs for C4ISR/EW and networked systems.
- Perform frequent incremental testing.
- Perform formal configuration management of the software code.
- Consider creating redundant systems & hardware.
- Use the expertise of the VSSO.

