#### D R 🖊 P E R

# Assessing Modularity-in-Use in Engineering Systems

2d Lt Charles Wilson, Draper Fellow, MIT Dr. Brenan McCarragher, Draper

### **Modularity-in-Use**

- Modularity-in-Use allows the user to reconfigure the system
- Distinct from Modularity-in-Design and Modularity-in-Manufacturing which benefit designers and producers
- Benefits to the user
  - Flexibility
  - Maintainability
  - Future cost savings
  - Increased lifespan
- Potential disadvantages
  - Higher initial cost
  - Reduced initial performance



Modular Products. Clockwise from top left: John Deere® Tractor, Izzy® Modular Office Furniture, Arleigh Burke Class Destroyer, Craftsman® Modular Power Tool Set.

#### D R 🖊 P E R

### **System Flexibility**

- Modularity-in-use provides system flexibility
- Flexibility increases system lifespan environment changes but system remains useful
- As time progresses environmental uncertainty increases
  - Evolving threats
  - New deployment environments
  - Changing use cases
- Performance decreases in rigid systems as environment changes



Relationship between flexibility and system lifespan. Credit: J.H. Saleh et al. (2002).

#### Challenge: assessing the value of increased flexibility due to Modularity-in-Use



#### **Performance Risk Reduction**

Performance Risk: the possibility of a future performance gap—quantified by future performance variance or probability of meeting required performance threshold.



flexible system. Credit: Saleh et al. (2009).

D R / P E R

#### **Flexibility Assessment Process**



Assessing future performance risk reduction due to system flexibility under uncertainty





### **Flexibility Measurement**

- Risk quantified by performance variance
- Calculate probability system will meet performance threshold
- Distribution average represents
  expected value of performance
- Example scenario: rigid system has higher average performance but greater variance
- Example performance threshold: 76
- Modular system has 72% probability of meeting or exceeding threshold
- Rigid system has 67% probability
- 5% lower than modular system despite higher average performance
- Test performance under specific future scenarios



Two Hypothetical Systems Compared: example tradeoff between expected performance and variance.

#### D R 🖊 P E R

### **Modularity-in-Use Case Study**

- Objective: provide decision maker greater insight into how each design performs in uncertain future
- Product: modular water bottles with solid food storage containers
- Performance Model: Multi-Attribute Decision Matrix
- Use Parameters: user's weights of product attributes
  - Liquid capacity
  - Solid Capacity
  - Weight
  - Pill Tray
  - Cost
- Performance Metric: single utility score
- Four products evaluated
  - Small, medium, and large rigid bottles
  - Modular bottle





#### DRAPER

### **Case Study Performance Model**

#### Identify Environment / Use Parameters

- Elements beyond control
- Potentially probabilistic

#### Define System Architecture

- Elements within designer's control
- May change with modular reconfiguration



#### Model System Performance

- Measure one or more Key Performance Parameters
- Modeled modular system reconfigures

- Environment / Use Parameters defined as user's perceived importance of product attributes
- System Architecture defined by physical attributes of the product

- Utility score calculated based on attribute weights and raw attribute data
- Relationships between attribute weights, raw data, and utility defined a priori



Attributes, relative weight, and relationships between each attribute and utility

DRAPER

normalized from 0 to 10.



### **Simulation of Uncertainty**



## **Sensitivity Analysis**

- User can compare performance under different future scenarios
- Modular product dominated on average
- Small product may still be desirable if Cost and Weight become relatively more important in the future
- Choose the Small product if this is a concern

| Modular vs. Small - When is Modular Better? |     |      |    |    |    |    |    |    |    |    |    |     |
|---------------------------------------------|-----|------|----|----|----|----|----|----|----|----|----|-----|
|                                             |     | Cost |    |    |    |    |    |    |    |    |    |     |
|                                             | 0   | 0    | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
| Weight                                      | 0   | 1    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1   |
|                                             | 10  | 1    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1   |
|                                             | 20  | 1    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1   |
|                                             | 30  | 1    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1   |
|                                             | 40  | 1    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1   |
|                                             | 50  | 1    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0   |
|                                             | 60  | 1    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 0   |
|                                             | 70  | 1    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 0   |
|                                             | 80  | 1    | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 0  | 0   |
|                                             | 90  | 1    | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 0  | 0  | 0   |
|                                             | 100 | 1    | 1  | 1  | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 0   |

Analysis conducted by altering Cost and Weight attribute weights while holding others constant. The Small product outperforms the Modular product when both are relatively more important.

## Summary

- Benefits of modularity can be assessed by measuring performance risk
- Performance risk measured through simulation
  of system performance under uncertainty
- Minimizing performance risk results in longer system lifespan
  - Better equipped force
  - Future cost savings

Flexibility granted by Modularity-in-Use can be assessed by measuring future performance risk to the user



Lower performance risk in modular system  $\Rightarrow$  Longer system lifespan



Higher average performance in rigid system but higher performance risk

 $\Rightarrow$  Shorter system lifespan

11