Modeling Safety and CyberSecurity Controls in SysML Michael J. Vinarcik, ESEP-Acq, OCSMP-Model Builder—Advanced Brian Pepper, OCSMP-Model User Booz Allen Hamilton National Defense Industrial Association 19th Annual Systems Engineering Conference October 24-27, 2016 ## **Contact information** Michael J. Vinarcik 248-227-1659 **Booz Allen Hamilton** vinarcik_michael@bah.com # **Managing Details** - "The devil is in the details, but so is salvation." - -- ADM Hyman G. Rickover (photo from U.S. Naval Historical Center) - A good system modeling effort manages the details that improve the odds of program success. - This presentation will focus on modeling safety and cybersecurity content. ## **System Modeling** - System modeling is emerging as a way to manage the inherent complexity of modern systems by providing a mechanism to store, manage, and associate information about a system under development. - This information can then be extracted and presented to stakeholders in formats relevant to them. - Modeling starts with user needs, develops system behaviors and functions, and ultimately describes the physical elements that provide the functions (with linkages to requirements and test cases). - Failure Mode Effects Analyses (FMEAs), cybersecurity controls, and Functional Hazard Analyses (FHAs) may be easily integrated into a system model (providing deeper insight into the system). Models grow organically as detail is added with no loss of fidelity. ## Why SysML? - Other system modeling languages exist, but SysML is the most widelyadopted and has a thriving tool ecosystem. - A well-constructed system model unambiguously represents a system's behavior, structure, and interrelationships between elements. - It also fosters a "crispness" in the formulation of issues (according to David Miller, NASA Chief Technologist). - In addition, current SysML tools allow the model content to be expressed as tables, matrices, and other derivative work products. - These derived work products enable the system to "talk to us," exposing patterns and content not easily gleaned from the review of traditional document-based artifacts. ## **An Example: Unmanned Aircraft Systems** - An unclassified, non-DoD example was needed for this presentation. - In 2007, NASA released NASA/TM-2007-214539: Preliminary Considerations for Classifying Hazards of Unmanned Aircraft Systems - -71 pages - Included NASA, Boeing, Certification Services, and AvioniCon staff - This presentation is not intended as a criticism of their work but will highlight errors and inconsistencies exposed by translating it into a SysML model. - These deficiencies illustrate the inherent limitations of a non-model based approach. ## **Imported Content** - The following content was imported directly from the report (some Excel reformatting and reorganization was necessary): - Glossary of terms - Functional decomposition - Operational consequences - MagicDraw 18.4 with the SysML plugin was used to demonstrate what is possible with "stock" SysML. Other alternatives considered were: - UPDM - Cameo Safety and Reliability Analyzer (built on Medical devices Application of risk management to medical devices (ISO 14971:2007, Corrected version 2007-10-01)) - Allows fault tree and FMEA analysis - Rejected due to presenter's lack of familiarity with this newly-released plugin #### **Architectural Schema** - Functional elements are traced to conceptual elements - Functional elements generalize logical elements - Physical elements realize logical elements ## **Functions As Operations** - Operations are used to represent functions: - Operations own parameters typed by signals to capture inputs, outputs, and results - Operations are owned by functional blocks and are called by call operation actions on activity diagrams - For the purposes of this analysis, no detailed activity diagrams were generated. Functions from the analysis were imported and owned by functional blocks. - Signals were manually created based upon the functions (for example, FP Command because there were functions that generated and executed FP commands). - Parameters were added to operations and were typed by signals (as appropriate) # **Example activity diagram** # **Examples of functions** | # | Name | Owner | Owned Parameter | |----|---|--|-----------------------------| | 1 | ○ Aviate | ■ UAS | | | 2 | Avoid adverse environmental conditions | Mitigate | | | 3 | Avoid air traffic | Avoid collisions | | | 4 | Avoid collisions | Mitigate | | | 5 | Avoid ground and vertical structures [while airborne] | Avoid collisions | | | 6 | Avoid ground path obstructions [while landing or on ground path obstructions] | Avoid collisions | | | 7 | Broadcast communications | Broadcast info to ATC and other aircraft | out : Signals::Communicat | | 8 | Broadcast info to ATC and other aircraft | Communicate | | | 9 | Broadcast transponder data | Broadcast info to ATC and other aircraft | | | 10 | Command and control between control station and UAS | Aviate | | | 11 | ○ Communicate | ■ UAS | | | 12 | Control air/ground transition | Aviate | | | 13 | Control center of gravity | Control UAS subsystems | | | 14 | Control environment inside the UAS | Control UAS subsystems | | | 15 | Control fire supression subsystem | Control UAS subsystems | | | 16 | Control flight path | Aviate | | | 17 | Control ground path | Aviate | | | 18 | Control power subsystems [hydraulic/electrical] | Control UAS subsystems | | | 19 | Control UAS subsystems | Aviate | | | 20 | Convey AGT command status | Control air/ground transition | out : Signals::AGT Comma | | 21 | ○ Convey AGT state | Control air/ground transition | out: Signals::AGT State | | 22 | Convey FP command status | Control flight path | out : Signals::FP Comman | | 23 | ○ Convey FP State | Control flight path | ○ inout : Signals::FP State | | 24 | Convey GP command status | Control ground path | out : Signals::GP Comman | | 25 | Convey GP state | Control ground path | Allon Hamilton | Booz | Allen | Hamilton # **Identification of duplicates** | 27 | Convey post corrective action status to ATC | Avoid ground and vertical structures [while air | | |----|--|---|------------------------------| | 28 | Convey post corrective action status to ATC | Avoid adverse environmental conditions | | | 29 | Convey post corrective action status to ATC | Avoid air traffic | | | 30 | Convey post corrective action status to ATC | Avoid ground path obstructions [while landing | | | 31 | Convey relative location of adverse environmental cond | Avoid adverse environmental conditions | | | 32 | Convey status of command | Manage contingencies | Out: Signals::Command S | | 33 | Convey system status | Manage contingencies | O out : Signals::System Stat | | 34 | Detect adverse environmental conditions | Avoid adverse environmental conditions | | | 35 | Detect air traffic | Avoid air traffic | | | 36 | Detect ground and vertical structures | Avoid ground and vertical structures [while air | | | 37 | Detect ground path obstructions | Avoid ground path obstructions [while landing | | | 38 | Determine AGT intent | Control air/ground transition | | # **Signals** | # | Name | |----|----------------------------------| | 1 | ■ AGT Command | | 2 | AGT Command Status | | 3 | ■ AGT State | | 4 | Command | | 5 | Command Status | | 6 | Communications | | 7 | Contingency Command | | 8 | Corrective Action Command | | 9 | Corrective Action Command Status | | 10 | ■ FP Command | | 11 | FP Command Status | | 12 | ■ FP State | | 13 | ■ GP Command | | 14 | ■ GP Command Status | | 15 | ■ GP State | | 16 | ■ Information | | 17 | Mitigation Command | | 18 | ■ Navigation Command | | 19 | State | | 20 | Transponder Data | | 21 | ■ UAS State | | 22 | ☑ Guidance Command | | 23 | Navigation Command Status | | 24 | Navigation state | | 25 | System Status | ## Operational consequences as use cases - Operational consequences were imported as use cases with an <<operational consequence>> stereotype applied: - Included hazard classification and remarks tags - Hazard classifications were: - Catastrophic - Hazardous - Major - Minor - No effect - -TBD # **Operational consequences** | # | Name | Documentation | O Hazard Classification | ○ Remarks | |----|---|---|-------------------------|--| | 1 | Catastrophic | | catastrophic | | | 2 | All communication being sent is not received by intended receiver. | All communication being sent is not received by
intended receiver. Alternate communication
system, such as land line can be utilized. | minor | Assumption is that Communicate refers only to voice tr | | 3 | All Communication being sent is not received by intended receiver. | All Communication being sent is not received by
intended receiver. Alternate communication
system, such as land line can be utilized. | major | Assumption is that Communicate refers only to voice tr | | 4 | C ATC will be expecting a status update, and will consult radar displays and continue to attem | ATC will be expecting a status update, and will
consult radar displays and continue to attempt to
reach UAS pilot/operator for outcome. | minor | Assumes ATC can deduce situation based on radar disp | | 5 | C2 system status is not available, therefore if C2 is lost also, then the vehicle cannot be cor | C2 system status is not available, therefore if C2 is
flost also, then the vehicle cannot be controlled and
no action (human or automation) can compensate. | catastrophic | A transient loss of C2 is considered a normal part of flig | | 6 | Could lead to loss of control of UAS AV or operation of the UAS AV outside of performance of | Could lead to loss of control of UAS AV or
operation of the UAS AV outside of performance
envelope. Possibility of conflict with another
envelope. Possibility of conflict with another
enveraged or enveloped and or ground
structures. If a problem is noticed by ATC in time,
ATC will attempt to provide instructions to UAS
operator in order to mitigate effects of failure. | hazardous | | | 7 | Flight crew/UAS does not know FP state. | Flight crew/UAS does not know FP state. The flight
crew may or may not recognize that the vehicle is
not performing correctly: flight termination may or
may not be initiated. | hazardous | A similar failure in the AC 23.1309 example is classified | | 8 | Flight crew/UAS formulates a mitigation action which takes significantly longer than normal. | Flight crew/UAS formulates a
mitigation action which takes
significantly longer than normal. Expect there is a
time buffer between initiation and hazardous
situation. Loss of safety margin results. | minor | Situations where this failure has more dire consequence | | 9 | Flight crew/UAS formulates a mitigation action which takes significantly longer than normal. | Flight crew/UAS formulates a mitigation action which takes significantly longer than normal. Expect there is a time buffer between initiation and hazardous situation. More than a significant loss of safety margin results. | hazardous | | | 10 | Flight crew/UA5 initiates contingency which takes significantly longer than normal. | Flight crew/UAS initiates contingency which takes
significantly longer than normal. Expect there is a
time buffer between initiation and the dangerous
situation. Loss of safety margin results. | major | | | 11 | Flight crew/UAS is trying to control FP state, but this is ineffective. | Flight crew/UAS is trying to control FP state, but
this is ineffective. By function 1.1.5, the UAS/flight
crew will recognize that guidance commands are
ineffective then use other means to control FP
state. | major | | | 12 | Flight crew/UA5 is unaware that flight termination system has been deployed. | Flight crew/UAS is unaware that flight termination
system has been deployed. Flight crew/LAS will
not immediately alert ATC of situation. However,
fairly soon because of the behavior of the vehicle
will be known to the flight crew and ATC. | major | | | 13 | Flight crew/UAS not able to change FP state. | Flight crew/UAS not able to change FP state,
Vehicle is uncontrollable, | hazardous | Execution of a soft landing function assumes that peop | # **Operational consequence example** | # | ^ Name | Documentation | O Hazard Classification | ◇ Remarks | |---|--|--|-------------------------|---| | 1 | All communication being sent is not received by intended received. | All communication being sent is not received by
intended receiver. Alternate communication
system, such as land line can be utilized. | minor | Assumption is that Communicate refers only to voice tr | | 2 | All Communication being sent is not received by intended received. | All Communication being sent is not received by
intended receiver. Alternate communication
system, such as land line can be utilized. | major | Assumption is that Communicate refers only to voice tr | | 3 | ATC will be expecting a status update, and will consult radar of | ATC will be expecting a status update, and will consult radar displays and continue to attempt to reach <u>UAS</u> pilot/operator for outcome. | minor | Assumes <u>ATC</u> can deduce situation based on radar disp | # Tracing functions to operational consequences - The <<trace>> relationship was used to connect functions to operational consequences. - Each relationship was named with the failure condition identified in the report. # **Trace table** | # | ^ Name | Client | Supplier | |----|---|--|--| | 1 | Z _A | O Determine right-of-way rules() | Potential for conflict with other traffic. | | 2 | 76 | Convey navigation state(: Navigation state) | O None | | 3 | 🦯 Air traffic not on a collision course is incorrectly tracked as a | ○ Track air traffic() | Possibility of loss of control and/or conflict with another (real) air | | 4 | 📑 🛂 Air traffic on a collision course is incorrectly tracked as a non | ○ Track air traffic() | Possibility of conflict with another aircraft. | | 5 | 🔏 All failure conditions | Control fire supression subsystem() | The fire suppression system is a back-up system that is only requ | | 6 | 🔏 All failure conditions | ○ Monitor and record UAS state data(: State [0*]) | UAS would not be able to reproduce state data in case of inciden | | 7 | 🔏 Any malfunction | O Convey GP state(: GP State) | O None | | 8 | 🔏 Any malfunction | Execute GP command(: GP Command) | O None | | 9 | 🔏 Any malfunction | Oconvey AGT state(: AGT State) | O None | | 10 | 🔏 Any malfunction | O Determine AGT intent() | O None | | 11 | 🔏 Any malfunction | Produce AGT command(: AGT Command) | O None | | 12 | 🔏 Any malfunction | Convey GP command status(: GP Command Status) | ○ None | | 13 | 🔏 Any malfunction | Determine ground intent() | O None | | 14 | 🔏 Any malfunction | O Produce GP command(: GP Command) | O None | | 15 | 🦰 Any malfunction other than loss of status of flight terminatio | O Convey AGT command status(: AGT Command Status) | O None | | 16 | 🔏 Corrective action status information is misleading. | Convey post corrective action status to ATC() | Will create different situational perceptions between pilot/operat | | 17 | 🚜 Degraded C2 data link function resulting in incorrect signal | Maintain command and control during all phases of flight() | UAS may make an unpredictable maneuver resulting in uncontroll | | 18 | 🔏 Degraded communications function | Broadcast communications(: Communications) | All communication being sent is not received by intended receiver. | | 19 | 🛂 Degraded communications function detected | Receive communications(: Communications) | All communication being sent is not received by intended receiver. | | 20 | 🔏 Degraded control | Control environment inside the UAS() | Significant reduction in safety margin and increase in pilot worklo | | 21 | 🛂 Degraded control of center of gravity | Control center of gravity() | Significant reduction in safety margin and increase in pilot worklo | | 22 | 🟸 Degraded function detected | ○ Monitor communications from ATC and other aircraft(: Communi | All communication being sent is not received by intended receiver. | #### **Trace Matrix** ## **Derived properties** - MagicDraw allows the creation of derived properties and custom columns in tables. - One of the most powerful features is metachain navigation, which allows relationships to be "hopped" from one element to another. # Example of functional block to operational consequence table | # | ^ Name | Catastrophic | Hazardous | |----|---|--|--| | 1 | Aviate | | | | 2 | Avoid adverse environmental conditions | | Could lead to loss of contro | | 3 | Avoid air traffic | | | | 4 | Avoid collisions | | | | 5 | Avoid ground and vertical structures [while airborne] | | | | 6 | Avoid ground path obstructions [while landing or on ground] | | | | | | Incorrect data being sent to other air | | | 7 | Broadcast info to ATC and other aircraft | | | | | | | | | 8 | Command and control between control station and UAS | UAS may make an unpredictable mane | | | 9 | Communicate | O OND May make an arpreactable mark | 1 | | | | Major structural and propulsion system | , | | | | O Plajor Stractardi di la propulsion system | | | 10 | Control air/ground transition | | | | | | | | | | | | | | | | Vehicle will not be controllable. | Without basic information : | | | | | Flight crew/UAS does not l | | | | | Flight crew/UAS not able to | | 11 | Control flight path | | Loss of ability to translate | | | | | Vehicle will respond slowly. | | | | | Vehide can no longer main | | | | | Vehicle will not be controlla | | 12 | Control ground path | | | Booz | Allen | Hamilton ## **Traceability view** # **Hazard matrix** | Legend | | | | | | | | | | | | | | |--|---|---------------------|-------------|------------------------|-----------------------|----------------|----------------|---------------------|---------------------|------------------------|------------------------|----------------------|------------------------| | OC Catastrophic | | 0:: | : | <u></u> | | : | - | | | | 9: | .: | <u></u> | | OC Hazardous | | P | expectin. | SS | ě | is
t | is u | 9 | 5 | × | are | ë. | 8 | | OC Major | | icati | exp | 8 | NAS | NAS | NAS | NAS | NAS | NAS | aft | ta
b | ţ | | OC Minor | | 뒫 | B | adt | ew/ | ew/ | ew/ | ew/ | ew/ | ew/ | airc | t da | apill | | OC No Effect | | All communication b | ATC will be | Could lead to loss of. | > Flight crew/UAS doe | Hight crew/UAS | Hight crew/UAS | Flight crew/UAS not | Flight crew/UAS not | > Flight crew/UAS will | If both aircraft are b | Incorrect data being | Loss of ability to con | | 7 Englished | | 2 | <u> </u> 2 | 0 | <u> </u> | | Functional Blocks | | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | | Avoid adverse environmental conditions | | | | 1 | | | | | | | | | | | Detect adverse environmental conditions() | 1 | | | \bigcirc | | | | | | | | | | | Avoid air traffic | | | | | | | | | | | | | | | Detect air traffic() | 2 | | | | | | | | | | | | | | Provide air traffic tracks() | 1 | | | | | | | | | | | | | | Select corrective action command(: Corrective Action Co | 1 | | | | | | | | | | | | | | ── ○ Track air traffic() | 2 | | | | | | | | | | | | | | Avoid ground and vertical structures [while airborne] | | | 1 | | | | | | | | | | | | Convey post corrective action status to ATC() | 2 | | 0 | | | | | | | | | | | | Broadcast info to ATC and other aircraft | | 1 | | | | | | | | | 1 | 1 | | | Broadcast communications(: Communications) | 3 | 0 | | | | | | | | | | | | | Broadcast transponder data() | 3 | | | | | | | | | | | | | | Participate in lost command and control [C2] link procedu | 1 | | | | | | | | | | | | | # **Complete hazard matrix** ## **Architecture example** - Example logical and physical elements were created. - Each inherited traceability to the operational consequences simply by creating the appropriate relationships with the other architectural elements # **Logical blocks** | | # | ^ Name | Catastrophic | Hazardous | Major | Minor | No Effect | TBD | |---|---|-------------------------|--|-----------|--|--|-----------|-----| | Γ | | | Incorrect data being sent to other air | | O No response is received w | All communication being se | | | | | | | | | If both aircraft are being t | The aircraft detects the lo: | | | | | 1 | Communications Receiver | | | | Since the loss of capability | | | | | | | | | | The pilot detects the loss of | | | | | | | | | | The pilot does not receive | | | # **Physical blocks** | # | ^ Name | Catastrophic | Hazardous | Major | Minor | No Effect | TBD | |---|------------------|--|-----------|--|--|-----------|-----| | | | Incorrect data being sent to other air | | O No response is received w | All communication being se | | | | | | | | If both aircraft are being t | The aircraft detects the lo: | | | | 1 | XR 1234 Receiver | | | | Since the loss of capability | | | | | | | | | The pilot detects the loss of | | | | | | | | | The pilot does not receive | | | # **Classifying signals** - One of the most powerful truths about a system model is that it can expose information and improve consistency. - Tracing parameters to operations and then to the operational consequences and their rating allows the safety criticality to be objectively assessed. - The rules applied for this analysis were: - Catastrophic / hazardous = safety critical - Major = safety significant - Minor = safety related - No effect = not safety related - -TBD = TBD # **Signal classification** | # | ^ Type | Owner | OC Severity Rollup | Signal Classification | |----|---------------------------|--|---|--| | 1 | ☑ AGT Command | Execute AGT command(: AGT Command) | catastrophic | safety critical | | 2 | ☑ AGT Command | Produce AGT command(: AGT Command) | no effect | safety critical | | 3 | | ○ Convey AGT command status(: AGT Command Status) | major no effect | safety significant | | 4 | ■ AGT State | Onvey AGT state(: AGT State) | o no effect | not safety related | | 5 | Command Status | Onvey status of command(: Command Status) | | ○ TBD | | 6 | | Monitor communications from ATC and other aircraft(: Communications) | o minor | safety significant | | 7 | Communications | Receive communications(: Communications) | major minor | safety significant | | 8 | Communications | Broadcast communications(: Communications) | ○ major○ minor | safety significant | | 9 | ■ Contingency Command | Determine contingency command(: Contingency Command) | | → TBD | | 10 | Corrective Action Command | Execute corrective action command(: Corrective Action Command) | | safety significant | | 11 | Corrective Action Command | Execute corrective action command(: Corrective Action Command) | | safety significant | | 12 | Corrective Action Command | Execute corrective action command(: Corrective Action Command) | | safety significant | | 13 | Corrective Action Command | Execute corrective action command(: Corrective Action Command) | | safety significant | | 14 | Corrective Action Command | igorplus Select corrective action command(: Corrective Action Command [0*], : C | o major | safety significant | | 15 | Corrective Action Command | O Determine corrective action(: Corrective Action Command) | | safety significant | | 16 | Corrective Action Command | Produce corrective action command(: Corrective Action Command) | | safety significant | | 17 | Corrective Action Command | O Determine corrective action(: Corrective Action Command) | | safety significant | | 18 | Corrective Action Command | \Diamond Select corrective action command(: Corrective Action Command [0*], : C | o major | safety significant | | 19 | Corrective Action Command | Produce corrective action command(: Corrective Action Command) | | safety significant | | 20 | Corrective Action Command | O Determine corrective action(: Corrective Action Command) | | safety significant | | 21 | Corrective Action Command | O Determine corrective action(: Corrective Action Command) | | safety significant | | 22 | Corrective Action Command | Produce corrective action command(: Corrective Action Command) | | safety significant | # **Error checking** ## **Document export** # Cybersecurity controls are similar - Cybersecurity controls may be associated with system model elements in exactly the same way: - Messages may be classified to error-check and ensure they flow on the correct network type - Controls may be applied to functions, messages, interfaces, or other system elements (and appear in tables, matrices, and traceability). - Tables and matrices (and reuses of elements) ensures that all instances of a given message or interface are identified. #### Conclusions - System modeling, when competently applied, allows robust Functional Hazard Analysis and cybersecurity analysis. - Reuse of model elements ensures consistency (numerous examples of non-singularized outcomes and slight wording differences were identified). - Custom properties enable rapid visualization and enhance traceability. - Exports of tables and matrices (or sharing via Cameo Collaborator) enable subject matter expert review. - Report export (via document modeling) ensures 100% consistency between analysis and the final work product.