

Control Station Human Machine Interface (CaSHMI)

An Implemented Use Case of Unmanned Systems (UxV) Command and Control (C2) via a Standards-based Enterprise Architecture

Scott R. Sideleau, NUWC Newport: Architecture Lead Darren Powell, SSC Pacific: Software Lead Lynn M. Ewart, Ph.D., NUWC Newport: Execution Manager Jeffrey G. Morrison, Ph.D., Office of Naval Research: Program Officer

27-OCT-2016

- "Quick" History of UxV C2 Applications
- MOCU and the UCS-MDE Standard
- CaSHMI: An Use Case for the Enterprise
- Field Experimentation
- Future Work

In the not too distant past...

- Several competing industry/government approaches to Unmanned Vehicle (UxV) Command & Control (C2) UIs
 - Tight coupling between Vehicle Control and UIs
 - Monolithic software
 - Expensive to maintain
 - Difficult to extend
 - Lack of modularity or insufficient scope of modularity
 - Loose coupling to open standards
 - UI design
 - Lack of Human Factors Engineering (HFE) influence
 - Inconsistent or nonexistent use of Common Symbology
 - Data models
 - Mixed use between vendors
 - Mixed use between robot operating domains (e.g. air, surface, subsurface, ground, etc)
 - Communications
 - C2 of platforms using open standards often an afterthought
 - Industry often has purview over proprietary "on the wire" C2 protocols

In the not too distant past...

- Several competing industry/government approaches to Unmanned Vehicle (UxV) Command & Control (C2) UIs
 - Tight coupling between Vehicle Control and UIs
 - Monolithic software
 - Expensive to maintain
 - Difficult to extend
 - Lack of modularity or insufficient scope of modularity
 - Loose coupling to open standards
 - UI design
 - Lack of Human Factors Engineering (HFE) influence
 - Inconsistent or nonexistent use of Common Symbology
 - Data models
 - Mixed use between vendors
 - Mixed use between robot operating domains (e.g. air, surface, subsurface, ground, etc)
 - Communications
 - C2 of platforms using open standards often an afterthought
 - Industry often has purview over proprietary "on the wire" C2 protocols

How do you extend today's C2 applications?

Traditional Example

Poorly Defined Layers

Traditional UxV C2 Example

Prone to Re-work when Scaled

 Increased complexity and cost to maintain

Comhai

Example Summary

- Existing UxV C2 approaches are problematic:
 - Lack sufficient data abstraction to promote maintainability and usability
 - Often fail to apply a cohesive open standards approach
 - Are prone to systemic re-work when scaled
 - Often leading to disparity between seemingly "common" C2 tasks

- Open Architecture Benefits
 - Reduce life-cycle costs
 - Training
 - Logistics
 - Adapt to evolving future requirements
 - Mitigate vendor lock
 - Create competition
 - Lower cost
 - Improved technology
 - Component reuse between programs
- ▼ How to define configuration item granularity?
 - Review the benefits above!

CaSHMI becomes an use case of MOSA for UxVs

Unmanned

System

Controller

Radio

Vehicle

- Leveraged "core" parts of UCS Architecture Version 3.2
 - Structure, process, etc. (Tech Governance)
 - Conceptual Data Model foundational data types
 - Logical Data Model Refinements and Basis Elements
 - Imported relevant SAE JAUS Services
- Included modified parts of UCS CDM through UMS RA WG effort
- Leveraged existing data models
- Included input from related efforts
- Incorporated feedback from various implementation assessments

Collaborative Effort to define UCS Multi-Domain Extension

NAVAIR's CCS gets it right...

The CONSISTENT UI (PRESENTATION LAYER) -

Built through Human Computer Interface (HCI) Style Guide and common task execution, maximizes benefits in training, allows for synergy in usability initiatives, reduces development costs

The FRAMEWORK -

Maximize Commercial Off The Shelf (COTS) and H/W independence, minimize size, leverage JMPS model for Bus./Tech. Rules. Must include Information Assurance Boundary

The UNIQUE Applications/Services -

Program of Record (POR) requirements not currently common, POR responsible for development, CCS responsible for specifications to work in FRAMEWORK and support consistent presentation layer

The COMMON Applications/Services -

Services or Applications that are shared/reused by Unmanned vehicles (UxV's), CCS responsible for specifications to work in FRAMEWORK and support consistent presentation layer

Combat Systems 12

NAVAIR's CCS gets it right...

...and we think CaSHMI does too. (Human-Machine Interface focused)

CCS needs an Enterprise UI

Combat Systems 14

CaSHMI is an HFE design – an Enterprise UI – for UxV Supervisory Control.

CCS needs an Enterprise UI

Combat Systems 16

пΠ

CaSHMI

UCD 1

CaSHMI Design Process

- Low fidelity sketches matured into high fidelity designs
- Refinements informed by operator/Fleet feedback from workshops/deep dives/exercises, internal PSE prototyping sessions, input from CaSHMI team, APB¹ OMIWG² feedback

CaSHMI User Interface

Build 1 (Oct, 2015)

	Timeline Detailed State	
At-a-glance Summary (Mini-dashes)	Sensor Area	Geo-Space
	-	Chat / Mission Alerts

- Supervisory elements more prominent
- More intuitive progression from summary to details
- Larger, standard-ratio Sensor Area
- Design fits all containers into a single screen
 - CaSHMI's 16:9 fits beneath SWFTS common header in 16:10 BYG-1
- Alternatives for expanding onto multiple screens

HMI is not a monolith...

CaSHMI Layered Approach

CaSHMI Layered Approach

Identifying Common Elements & Business

Logic

Field Experimentation

Combat Systems

Thanks!

Any questions?

пΓ

Combat Systems

Scott R. Sideleau

scott.sideleau@navy.mil

Darren Powell

darren.powell@navy.mil

