

# Improving Acquisition with Set-Based Design

Presented at NDIA SE 2016 Abstract 18997

### 27-Oct-2016

Georgia Tech Research Institute

Daniel C. Browne daniel.browne@gtri.gatech.edu 404-407-7264

Don D. Fullmer david.fullmer@gtri.gatech.edu 404-407-8165 Naval Surface Warfare Center – PCD

David S. Slusser david.slusser@navy.mil 850-235-5407

Robert Stone robert.stone@navy.mil

George R. Terrell george.Terrell@navy.mil

### Georgia ∦ Research Tech ∦ Institute

Problem. Solved.





## **Set-Based Design (SBD)**

Set-based design is founded on three key principles

- Defining an appropriate design space
  - Consider multiple large "sets" of alternatives
  - Consider what is feasible with respect to the customers and engineering voices
  - Communicate through sets or boundaries
- Integrating sets by intersection
  - Seek conceptual robustness (where sets overlap)
  - Infusing multiple conceptual perspectives

### - Establishing feasibility before commitment

- Reduce the trade-space in deliberate and informed manner (design flexibility / cost / risk / etc.)
- Requirements trade-space is reduced based on operational value and risk
- Design trade-space is reduced based on feasibility and value (capacities / schedule / etc.)

### Set-Based Design methodology enables informed design decisions

#### Georgia echminsti







## **Set-Based Design vs. Conventional Design**

| Set-Based Design                                                                                                                                                                                                           | Conventional Design                                                                 |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|
| Allows <i>constraining</i> decisions to be made later, after sufficient information is gathered.                                                                                                                           | Attempts to Lock-in the design as early as prevent blocking the engineering process |  |
| Decisions which remove parts of the trade-space, where<br>changes to the decisions would result in significant additional<br>cost in the future.                                                                           |                                                                                     |  |
| Provide varying solution architectures to enable trades on<br>requirements (i.e. performance, capability), resources (i.e. cost,<br>schedule), and provide flexibility/robustness in the process to<br>requirement change. | Provide single point solution based on earequirements                               |  |
| Improve breadth and depth of knowledge of the wider trade-<br>space, with increased traceability to decision makers on how the<br>viable configurations were determined                                                    | Focus on increasing detailed understanding within the locked-in design space.       |  |
| Reinforce confidence in final recommendations with a pattern of reproducible defensible artifacts in support of the decision process, specifically before highly <i>constraining</i> decisions.                            | Design efforts are in support of the initial solution                               |  |

**DISTRIBUTION STATEMENT A // APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED** 

#### **Georgia** Research **Tech || Institute**

## s possible in order to

### rly assessments of

### ng of the trade-space

### lly identified candidate



### What are the <u>Perceived</u> Barriers to Using Set-Based Design?

- Time Required to Analyze the Full Trade-space is Excessive
  - SBD is described as carrying tens or hundreds of thousands of designs forward in parallel
  - Physics-based simulations can take considerable time -
- Quantity of Data Generated from Full Trade-space Exploration is too Large to Analyze and Maintain
  - Large multi-faceted data
  - Tools have processing limits
  - Difficult to maintain traceability -
- Additional Analysis is Cost Prohibitive
  - Engineers are already busy
  - Requires investment in new skills and capabilities -

### DISTRIBUTION STATEMENT A // APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED







## Time Required to Analyze Full Trade-space is not too Excessive?

• Automated analytical framework leverages computing power to allow for exploring large sets of candidate solutions.

| ACV (2013)                                                              | <b>SSCTF (2014)</b>                            | SMI                                    |
|-------------------------------------------------------------------------|------------------------------------------------|----------------------------------------|
| Explored 1M+<br>combinations across<br>27 trade studies in<br>9 months. | Explored 16M+<br>combinations in<br>~6 months. | Explore<br>combinat<br>16 archi<br>3 m |

Automated analytical framework allows for guick Design and V&V iterations.





## (2016)

ed 1.5M+ cions across tectures in onths.

### **SMI** 30-40 minutes



## Quantity of Data Generated from Full Trade-space Exploration is **<u>not too</u>** Large to Analyze

- Custom visualizations allow decision makers to efficiently interact with data.
- Automated data analysis prunes the trade-space.



DISTRIBUTION STATEMENT A // APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED







### **Additional Analysis** <u>is not</u> Cost Prohibitive

- Set-Based Design (SBD) promotes good Systems Engineering practices.
- Delaying *constraining* decisions postpones cost commitment and allows decisions to be informed by superior data.





Integrity - Service - Excellence

#### Georgia Research **lech 🛛 Institute**



## Framework for Assessing Cost & Technology (FACT)

- Processes large data sets through integrated ulletModeling and Simulation
- Provides data integration, processing and concise ٠ visuals of data relationships and solution alternatives
- Allows users to understand and rapidly assess interdependencies between requirements, components, and variables of large and complex data sets
- Allows decision makers to explore the trade-space ulletand compare alternatives
- Allows leaders to maintain and manage an evolving ulletrequirements sets
- Proven effective in supporting SBD methodology and processes



FACT supports SBD by integrating and executing multiple models, databases, & information sets to produce actionable solution alternatives to aid decision makers

DISTRIBUTION STATEMENT A // APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

#### Georgia | Research **lech 🛛 Institute**



## **Collaborative Systems Engineering Tools for Resilient Systems**



- Engineered Resilient Systems: Supporting DoD CoI through Army/ERDC
- Model Based Systems Engineering: web-based, collaborative tools and a modular framework
- Integrated with High Performance Computing assets at **DoD Centers**
- Building on USMC Investment: building on a multi-year USMC investment in the Framework for Assessing Cost and Technology (FACT)

**Improved Acquisition & Development** for Sustained System Effectiveness



#### **Georgia** Research **Tech 🕅 Institute**



### What is a Smart Mine?

### **TRADITIONAL**

Cold War Rudimentary Uncontrolled Immobile One Effect ("Boom") Destructive Overt Limited depths Many sorties



Smart Mine effort brings offensive mining into 21<sup>st</sup> Century



**DISTRIBUTION STATEMENT A // APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED** 

#### **Georgia** Research **lech 🕅 Institute**

### **SMART MINE**

- Modern Warfare
  - Sophisticated
    - Controlled
  - Asymmetric
- Multiple Effects
  - Disruptive
    - Robust
- Variable Depth
  - Few sorties





## **Smart Mine Process**

- 1. Collect information
  - What Capabilities Are Possible? -
  - Fleet Survey -
    - Scenario-Based Evaluation (Wargame) ٠
    - Determine Which Capabilities Are Important to Users ٠
  - Market Survey -
    - NR&DE Submitted Potential Components • (Effectors, Sensors, Communications, Vehicles)
    - Excel Spreadsheet Format •





#### Georgia Research **lech 🛛 Institute**





## **Smart Mine Process**

- 2. Generate and Evaluate Alternatives
  - Explore Complete Tradespace
    - Generate Random Configurations for Each System Architecture Concept and Sort by Average Value
  - Focus on Highly-Valued System Architectures
    - Randomly Generate ~1M Configurations
    - Effectors (2), Sensor (1), Communications (1), and Delivery (1)
  - Evaluate Attributes of Each Configuration (Value, Weight, Cost, Carrying Capacity, etc.)
  - Custom Software Written in Python Using Jupyter Notebook Environment
  - Cost Estimation Performed Using SEER Model

\*Note: Logos presented here are for informational purposes only and do not apply or constitute DoD endorsement. ITION IS UNLIMITED

G

#### Georgia | Research Tech | Institute







### **Smart Mine Process**

### Filter By Capability Concepts

- 3. Visualize and Filter
  - Filter Systems by Capabilities or Attributes
  - **Determine Which** -**Configurations Are Feasible**



### Filter By Attributes



#### DISTRIBUTION STATEMENT A // APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

#### **Georgia** | Research **Tech 🛛 Institute**





### **SMI Visualizations**

### **Capability Histograms**



SMI Dashboard

Value Histogram

Sorted Configuration List

DISTRIBUTION STATEMENT A // APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

#### Georgia Research Tech Institute







## **Impacts of Set-Based Design**

- Build Trust
  - Rapid V&V instills confidence in the input data, models, and analysis results.
- Continuous Learning
  - Leverage the automated analytical framework and computing resources to search the tradespace round the clock.
  - Maintain trades throughout entire decision making process.
- Powerful Visualizations
  - Decision makers make more informed decisions through inspection of interactive visualizations
  - Gain insight into reasonable thresholds and objectives requirements







# Improving Acquisition with Set-Based Design

Presented at NDIA SE 2016 Abstract 18997

### 27-Oct-2016

Georgia Tech Research Institute

Daniel C. Browne daniel.browne@gtri.gatech.edu 404-407-7264

Don D. Fullmer david.fullmer@gtri.gatech.edu 404-407-8165 Naval Surface Warfare Center – PCD

David S. Slusser david.slusser@navy.mil 850-235-5407

Robert Stone robert.stone@navy.mil

George R. Terrell george.Terrell@navy.mil

### Georgia ∦ Research Tech ∦ Institute

Problem. Solved.

