

High Performance Computing in Support of Engineered Resilient Systems

Rob Wallace, Ph.D., P.E., Chief Scientist

Distribution A: Approved for public release: distribution unlimited

Presentation Outline

- HPCMP Overview
- Progression of Analytics
- HPCMP CREATE
- Parallel Analytics
- Integrated HPC Analytics

HPCMP High-Level Operational Concept

Users NNT OF

DOD HP

DEPARTMENT OF DEFENSE HIGH PERFORMANCE COMPUTING MODERNIZATION PROGRAM

A technology-led, innovation-focused program committed to extending HPC to address the DoD's most significant challenges

Results

Acquisition Engineering

Science and Engineering Disciplines Supported by HPCMP

Innovative research and development, test and evaluation, and engineering is based on synergistic application of science-based software utilizing advanced computing and experiments

Space and Astrophysical Sciences

Forces Modeling & Simulation

Signal/Image Processing

Computational Electromagnetics & Acoustics

Computational Structural Mechanics

Climate/Weather/Ocean Modeling & Simulation

Environmental Quality Modeling & Simulation

Integrated Modeling & Test Environments

Electronics, Networking, and Systems/C4I

Computational Fluid Dynamics

Computational Chemistry, Biology & Materials Science

HPCMP Centers High-Level Operational Concept

DEPARTMENT OF DEFENSE HIGH PERFORMANCE COMPUTING MODERNIZATION PROGRAM A technology-led, innovation-focused program committed to extending HPC to address the DoD's most significant challenges

DoD Supercomputing Resource Centers (DSRCs)

Each Center is a robust complement of HPC capabilities that include: large-scale HPC systems, high-speed networking, multi-petabyte archival mass storage systems, and customer support services.

DSRC Resources

VDSR

DOD Supercomputing Resource Centers (DSRCs) Systems

For additional information on each of the Centers and their capabilities, visit http://centers.hpc.mil/

NDIA Systems Engineering Conference - 2016 - Wallace - Page-6

Progression of Analytics

Difficulty

RDT&E Process

- HPCMP focused on "Modeling"
- ERS requires a new boundary

Computational Research and Engineering Acquisition Tools and Environments (CREATE)

CREATE is a multi-phase program that started in 2008, to develop and deploy four (now five) computational engineering tool sets for acquisition engineers

- Aircraft (AV) Design Tools: Fixed-wing aircraft, rotorcraft, conceptual design, trade-space exploration and operational testing and transition
- Ship Design Tools: Shock/damage, hydrodynamics, early-stage design & trade-space exploration, and operational testing and transition
- Radio Frequency (RF) Antenna Design and Integration Tools: Conceptual design and detailed analysis tools relevant to virtually all DoD platforms
- **Ground Vehicles (GV) Tools:** End-to-end mobility solver, provide rapid, physics-based data for design and trade-space analysis
- **Meshing and Geometry (MG) Support:** The geometry and meshing project improves the ease, speed, flexibility, and quality of geometry and mesh generation, and enables the generation of CAD-neutral digital representations and product models of weapons systems & platforms and operational terrains and environments

CREATE-AV

Aircraft (AV) Design Tools

CREATE-SHIPS

Ship Design Tools

CREATE-RF

Radio Frequency (RF) Antenna Design and Integration Tools

CREATE-GV

Ground Vehicle Design Tools

CREATE-MG

Meshing and Geometry (MG) Support

CREATE: Suite of Physics-based HPC Tools for the design and analysis of DoD platforms:

- Air Vehicles (AV)—Air Force, Army & Navy
 - Concept design, High Fidelity Fixed-Wing and Rotary-Wing
- Ships—Navy
 - Concept design, Shock and Life Fire Vulnerability, Hydrodynamics
- Radio Frequency (RF) Antennas—Air Force, Army & Navy
 - RF Antenna electromagnetics & integration with platforms
- Ground Vehicles (GV) Army, Marine Corps
 - Design and evaluation of tactical ground vehicles
- Mesh and Geometry (MG) Generation
 - Rapid generation of geometry representations and meshes

CREATE tools support all stages of acquisition from rapid earlystage design to full life-cycle sustainment and modifications

Aircraft and aircraft carrier meshes

NDIA Systems Engineering Conference – 2016 – Wallace – Page-10

Military platforms with antennas

Shock vulnerability

Design concept

Seakeeping and resistance

Number of Processes = 8 desktop, 16 cluster, 348 supercomputer

NDIA Systems Engineering Conference – 2016 – Wallace – Page-13

- Basis for predicting impact of future modifications
- Supports Data Analysis
- Optimized flight test matrix

* High fidelity CFD codes accurately predict complex rotor blade performance

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Task 3: CH-47 Mission Analysis

Objective

Demonstrate accuracy in predicting mission capability for the Legacy CH-47 helicopter using Helios Engineering Model based rotor map.

Software Basis

Helios v4.0

RDECOM®

 \bigstar

U.S.ARMY

Task

ID

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Report

Evaluation Data

Legacy CH-47 Flight Performance Model (FPM)

Schedule

Task Name

Thrust Sweep - 200 ft/min VROC

Speed Sweep - High Gross Weight

Speed Sweep - Mid Gross Weight

Speed Sweep - Low Gross Weight

Perform Mission Analysis

CH-47F Mission Analysis

Thrust Sweep - Hover

<u>Run Matrix</u>

Updated ACRB Effort

RDECOM*

 $\overleftarrow{}$

U.S.ARMY

Helios v4.0: 30 points, 5 million CPU hrs, 3 calendar months.

Data Analysis: Carpet plot is dependent on extrapolation, interpolation and smoothing.

Impact

- Predicted specification point performance to inform programmatic decision making.
- Defined and validated a new standard process for high fidelity mission assessments.

Impact

- Predicts specification point performance for updated ACRB design.
- Case runs will pre-populate entire flight envelope to evaluate performance and optimize ACRB flight test matrix (Jan 2017).
- Flight test data will enable ACRB model validation efforts which will lead to airworthiness assessments and additional PM support tasks.

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

So What?

- New DoD programs (such as ERS) are moving toward prescriptive analytics that require a change in how analytics are performed
- HPCMP provides computing resources that allow Integrated analytics that combine physics-based simulations to support mission critical analysis