Factors Affecting Dispersion of M118LR Sniper Ammunition

Zach Krogstad, Chris Drake (ARDEC) Dan Meierhofer, Dustin Triebel (Orbital ATK) Jeff Siewert (ArrowTech) 4 May 2017

UNCLASSIFIED

- ANNOW IECH -

If you can't get a bigger target...

Problem Statement

- Snipers demand compact weapon systems that shoot small groups
- The 7.62mm Compact Semi-Automatic Sniper System (CSASS) was developed for use with M118LR ammunition to achieve these requirements
- PM-MAS initiated an effort to discover the cartridge design, test, and manufacturing factors that could improve M118LR dispersion

UNCLASSIFIED

M110 SASS

E-Type Target

M110E1 CSASS

Phase 1: Interior Ballistics

- Evaluate velocity standard deviation and propellant temperature sensitivity in pressure/velocity (EPVAT) barrels
- Establishes charge weight for "even-handed" assessment of factors
- Down-select factors to include in exterior ballistics phase

Phase 2: Exterior Ballistics

- Evaluate dispersion in accuracy barrels
 - Production acceptance barrel
 - CSASS w/ and w/o suppressor
- Shoot groups at short and long ranges
 - 100 & 300 meters (simultaneous) indoors
 - 1000 yards outdoors

Test Design

- Team of subject matter experts (ARDEC, Orbital ATK, ArrowTech, Sierra) defined a long list of factors likely to improve dispersion
- Two phases executed using highly efficient designed experiments capable of screening factor main effects and selected 2-factor interactions
 - ~41,000 factor combos tested in 46 rows at each range (Phase 2)
- Utilized computer-generated D-optimal split plot designs
 - Highly customizable in complex factor environment (especially when dealing with pesky hard-to-change factors like barrel type)
 - Cutting edge design on the forefront of the DOE field
 - Allows maximum information gain with minimum expense

- Case/Cartridge (6)
 - Case type
 - Primer
 - Propellant
 - Etc.

- Manufacturing process (5)
 - Neck crimp
 - Neck de-burr & re-size
 - Bullet seating datum
 - Etc.
- Mission factor (1)
 - Target range (100 & 300 m, 1,000 yds)

- Bullet (8)
 - Boat tail angle
 - Weight
 - Jacket
 - hardness/thickness
 - Etc.

- Weapon factor (1)
 - Barrel type/suppressor combo
- Noise factors (2)
 - Rounds on barrel
 - Ammo conditioned
 temperature

Charge Weight Establishment

Always a Step Ahead ARDEC ARMAMENTS

- Evaluated factors that were known to affect charge weight
- Established charge for nominal velocity out of EPVAT barrel
- Use test results to fit a predictive model to identify charge weights for each cartridge configuration used in subsequent tests

Test factors:

- 1. Charge delta
- 2. Propellant
- 3. Primer
- 4. Bullet lubrication
- 5. Case mouth waterproofing
- 6. Case neck crimp

Interior Ballistics Test

Evaluate propulsion repeatability affecting muzzle exit conditions (velocity variability, bullet yaw rates)

- Identified critical propulsion factors to test in exterior ballistics testing
- Identified factors for reduced temperature sensitivity

Significant factors affecting velocity SD:				22" EPV	AT k	oarrel		
Source CondTemp Propellant Type	LogWorth 11.981 7.117	P1 0.0	Value	Contraction of the second		A	~	16" EPVAT barrel
CondTemp*Primer Type EPVAT Barrel Type*Propellant Type CondTemp*CondTemp Primer Type	2.492 2.317 2.192 2.052	0.0	00322 00482 - 00643	Test Factors:	1.	Propellant	6.	Bullet seating method
CondTemp*Propellant Type Case Type	1.840	0.0)1446)2565		2.	Primer	7.	Rounds on barrel
Bullet Lubrication CMWP*Propellant Type	1.298 0.926	0.0)5039 11858		3.	Case type	8.	Temperature
Primer Type*Propellant Type CMWP	0.845	0.1	14288 17296 ^		4.	Case neck crimp	9.	Barrel type
EPVAT Barrel Type	0.279	0.5	52592 ^		5.	Bullet lubrication	10.	Case mouth waterproofing

Exterior Ballistics: Test

Designed test to evaluate dispersion

- 46 test configurations shot (2 locations for a total of 1,380 rounds)
 - 100 & 300 m, fly-through (indoor)
 - 1,000 yd (outdoor)
 - 16" barrel (w/ and w/o suppressor), 26" barrel
- Digital target data at all 3 ranges used to assess multiple performance metrics:
 - Extreme spread, horiz./vert. SD, mean radii, velocities @ 5 ft., 100 & 300 m

Test factors:

- 1. Ogive shape 7. Propellant
- 2. Meplat diameter 8. Case type
- 3. Boat tail angle 9. Neck preparation
- 4. Bullet heel 10. Primer
- 5. Bullet lubrication 11. Barrel type
- 6. Case neck crimp 12. Case mouth waterproofing

Exterior Ballistics: Results

7

Mean radius model: 100 & 300 meters

a a \A/a #th		
Logworth		PValue
5.987		0.00000
5.291		0.00001
3.189		0.00065
2.323		0.00476
2.194		0.00639
1.551		0.02813
1.123		0.07537
0.912		0.12249
	5.987 5.291 3.189 2.323 2.194 1.551 1.123 0.912	5.987 5.291 3.189 2.323 2.194 1.551 1.123 0.912

Mean radius model: 1000 yards

ffect Summary										
Source	LogWorth									PValue
Bullet Heel	2.167									0.00681
Propellant	1.784									0.01645
Barrel Type	1.426								-	0.03752
Bullet Lube	1.246									0.05669
Collet Crimp	1.195								-	0.06380
Ogive	1.144							-		0.07172
CMWP	0.993							1		0.10174

- Test data analysis generates an analytical model for all factor level combos
 - Enables optimization

Changes to current production baseline for improved dispersion:

- 1. Propellant type
- 2. Bullet heel
- 3. Case type
- 4. Case mouth waterproofing
- 5. Case neck preparation
- 6. Charge weight variability

Conclusions and Recommendations

- Conclusive results to prioritize effort going forward
- Screened a comprehensive list of factors to prioritize dispersion effects using a novel, highly efficient D-optimal split plot test design approach
- Broadly applicable to screening tests with lots of factors where interactions are understood

Acknowledgements

If you can't get a bigger target ...

UNCLASSIFIED